python代码问题记录

本文讲述了在使用PyTorch进行实验时遇到的三个常见错误:IndexError(数组越界)、RuntimeError(设备不一致)和ValueError(返回值数量过多)。提供了针对这些问题的解决方法,包括调整数组长度、确保所有tensor在同一设备以及处理多返回值的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

记录实验过程中遇到的各种问题

持续更新~

1、出现了IndexError

IndexError: index 1 is out of bounds for dimension 0 with size 1

出现 IndexError: index 1 is out of bounds for dimension 0 with size 1 是因为在某个地方访问了一个长度为1的数组的第二个元素,导致越界。需要看错误提示所在的行数和代码逻辑才能确定修改方法。

解决方法:根据提示找到对应的行,判断是哪个元素的数据长度超出了1,将长度超过1的元素进行重新定义,保持数据长度为1。

def calculate_centroid(label, class_num):
        centroid = torch.zeros(1)
        count = torch.zeros(class_num)
        for i in range(class_num):
            mask = (label == i)
            count[i] = torch.sum(mask)
            if count[i] > 0:
                centroid[i] = torch.sum(mask.float() * label) / count[i]
        return centroid

centroid的长度为1,不存在centroid[i] ,修改为centroid

def calculate_centroid(label, class_num):
        centroid = torch.zeros(1)
        count = torch.zeros(class_num)
        for i in range(class_num):
            mask = (label == i)
            count[i] = torch.sum(mask)
            if count[i] > 0:
                centroid= torch.sum(mask.float() * label) / count[i]
        return centroid

 

2、出现了RuntimeError

RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!

 出现RuntimeError:Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!是因为代码中涉及到了CPU和GPU两种设备,导致数据在不同的设备上。需要将它们都放在同一个设备上。

解决方法:找到没有使用GPU的数据,在数据后面加上.cuda()

class Weight_2:
    @staticmethod
    def calculate_centroid(label, class_num):
        centroid = torch.zeros(1)
        count = torch.zeros(class_num)
        for i in range(class_num):
            mask = (label == i)
            count[i] = torch.sum(mask)
            if count[i] > 0:
                centroid += torch.sum(mask.float() * label) / count[i]
        return centroid

此时计算centroid和count使用的是cpu,而代码中其余数据使用的是gpu,需要修改centroid和count的代码

    def calculate_centroid(label, class_num):
        centroid = torch.zeros(1).cuda()
        count = torch.zeros(class_num).cuda()
        for i in range(class_num):
            mask = (label == i)
            count[i] = torch.sum(mask).cuda()
            if count[i] > 0:
                centroid += torch.sum(mask.float() * label) / count[i]
        return centroid

 

3、出现了ValueError

ValueError: too many values to unpack (expected 4)

出现ValueError: too many values to unpack (expected 4)是因为返回值的数量超过了此时我接收返回值的变量的数量,需要重新修改接收变量的数量。

解决方法:增加接受变量的数量。

s_output, t_output, t_output1, t_output2 = model(data, data, target, mode='ec')

经过model产生的返回值实际有五个,需要增加一个变量来接收返回值

s_output, t_output, t_output1, t_output2, t_output3= model(data, data, target, mode='ec')

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值