测试经典题 首先,做软件测试,我会分成四个阶段:分析需求–>设计测试方案–>执行测试–>总结【分析需求】先尝试获取网站的需求文档、技术设计等。这个体验仍然是为了尽可能地明确,网站主要为什么样的用户服务,为用户提供了什么样的帮助,网站每个功能的完整使用流程是怎样的。疑问和障碍如果能够消除,执行测试的效果是最好的。在这个过程中,并非简单的执行方案。API测试是针对应用程序的接口进行测试的实践。接口通常是指两个系统或组件之间的通信点,API测试主要关注的是验证这些接口在数据交换、功能实现和互操作性方面的正确性和可靠性。
计网面经111 3、流量控制:TCP使用滑动窗口协议来控制发送方发送数据的速率,接收方会告诉发送方它的缓冲区大小,发送方会根据接收方的缓冲区大小来控制发送速率,确保接收方不会因为太快而丢失数据。2、序列号和确认号:TCP将每个数据段都分配一个序列号和确认号,序列号用于标识数据段的位置,确认号用于确认已经收到的数据段的位置,这样可以避免数据丢失或乱序。通过以上这些机制,TCP保证了数据的可靠传输,但是也会造成一定的延迟,因为数据包需要等待确认和重传,以及滑动窗口和拥塞控制会限制发送速率。
整理一些面经 学习目标:掌握Python的基础,如元组、字典、列表、集合、迭代器、生成器、闭包、装饰器,了解python的多线程、内存管理、垃圾回收机制!深拷贝(Deep Copy)和浅拷贝(Shallow Copy)是在复制对象或数据结构时所使用的两种不同的拷贝方法,它们之间的区别主要在于拷贝的程度和对原始对象内部结构的影响。浅拷贝创建一个新的对象,但是只复制原始对象的基本数据类型的字段或引用(地址),而不复制引用指向的对象。因此,对新对象所做的修改可能会影响到原始对象,因为它们共享相同的引用。
迈向大规模小目标检测:综述与数据集 本文对小目标检测进行了全面回顾,首先对基于深度学习的小目标检测算法进行了系统性的综述,同时总结和回顾了常用的一些数据集。为了推动该领域的进一步发展,我们构建了第一个专为小目标检测定制的大规模数据集SODA,包含SODA-D和SODA-A。基于这两个数据集,我们对数个代表性算法进行了性能评估和对比。最后我们对小目标检测的预期发展进行展望:高效特征提取网络:如前所述,现有的骨干网络可能不利于提取小目标的高质量特征表示。
Augmentation for small object detection 我们对MS COCO数据集上的当前最先进模型Mask-RCNN进行了分析。我们发现小物体的ground-truth与预测的锚框之间的重叠远远低于预期的IoU阈值。我们推测这是由两个因素造成的:(1)只有少数图像包含小物体,(2)即使在包含小物体的每个图像中,小物体也没有足够的出现次数。因此,我们提出对那些包含小物体的图像进行过采样,并通过多次复制粘贴小物体来增强每个图像。
Selective Kernel Networks(CVPR-2019) 提出了一种动态选择机制,允许每个神经元根据输入信息的多个尺度自适应调整感受野大小。设计了一种称为选择核(SK)单元的结构块,利用softmax attention 对不同核大小的多个分支进行融合。对这些分支的不同attention产生融合层神经元有效感受野的不同大小。多个SK单元被堆叠成一个称为选择性核的网络SKNets。文章提出了一种非线性方法,从多个内核中聚合信息,实现神经元的自适应RF大小。我们引入了 “选择性内核”(SK)卷积,它由三组运算符组成:Split, Fuse and Select。
1*1卷积核实现升维降维 升维:卷积核shape为[1,1,3,10],即10组[1,1,3]的卷积核,先用其中一组对这张图片卷积得到[32,32,3]的数据,然后将这3为数据相加之后得到[32,32,1],所以10组卷积核能得到[32,32,10]的输出,这样改变了维度。来源:https://zhuanlan.zhihu.com/p/661786236。假设现在有一张图片形状为[32,32,3],32为长和宽,3代表通道数。降维:同理,只需将10改为想要的维度就可以了。
将NWPUD数据集转化为yolo格式 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。原文链接:https://blog.csdn.net/Fan1534/article/details/135227192。
Dropout Feature Ranking for Deep Learning Models 深度神经网络( Deep Neural Networks,DNNs )已经开始在生物学和医疗保健领域崭露头角,包括基因组学( Xiong et al . , 2015)、医学影像( Esteva et al , 2017)、EEG ( Rajpurkar et al , 2017)和EHR ( Futoma et al , 2017)。然而,DNNs是黑盒模型,因其不可解释性而臭名昭著。在生物学和医疗保健领域,为了推导出可以通过实验验证的假设,提供关于哪些生物学或临床特征驱动预测的信息是至关重要的。
Object Detection of Remote Sensing Images 总之,为了解决在密集场景和复杂背景下检测小物体的困难,同时保持相对较高的精度,一种基于多核扩张卷积(MDC)和变压器的新型单阶段物体检测模型MDCT for RSOD 本文提出了块。卷积与扩张卷积的不同之处在于,卷积中的像素是连续的并且集中于卷积的特征。因此,我们的工作重点是密集场景和复杂背景中的小物体,并提出了一种基于多核扩张卷积和变压器的新型单阶段物体检测模型。此外,一阶段目标检测模型中主要的级联方法与上下文无关,容易导致特征信息丢失,在密集场景和复杂背景下难以区分目标和背景特征。
Salient Object Detection in Optical Remote Sensing Images Driven by Transformer 最近开发了基于 Transformer 的目标检测,以应对基于区域提议和基于回归的目标检测所面临的大计算负载和精度牺牲之间的权衡困境,其自注意力机制可以提供具有潜在能力的全局理解 用于推理稀疏异构分布的地理空间对象内的位置关系。最近,开发了基于变压器的目标检测方法[15]、[16]和[17]。随着遥感图像空间分辨率的提高,从对地观测中频繁、准确地识别感兴趣的地理空间目标对于广泛的应用至关重要,例如城市规划中的违法建设[1]、[2]、军事侦察[3]、 以及用于交通控制的飞机和车辆监控[4],[5]。
An Improved Swin Transformer-Based Model for Remote Sensing Object Detection and Instance Segmentati 为了解决这些问题,我们基于 Transformer 和 CNN 的优点改进了 Swin Transformer,设计了局部感知 Swin Transformer (LPSW) 主干来增强网络的局部感知,提高小规模的检测精度。自注意力机制的结构如图2所示。近年来,虽然出现了许多优秀的算法,如路径聚合网络(PANet)[8]、Mask Score R-CNN [9]、Cascade Mask R-CNN [10]以及按位置分割对象(SOLO)[ 11],典型的问题仍然存在,例如分割边缘不准确和全局关系的建立。
Transformer with Transfer CNN for Remote-Sensing-Image Object Detection 所提出的带有数据增强的 T-TRD(T-TRD-DA)在两个广泛使用的数据集(即 NWPU VHR-10 和 DIOR)上进行了测试,实验结果表明所提出的模型提供了有竞争力的结果(即, 与竞争基准方法相比,百倍平均精度为 87.9 和 66.8,最多分别比 NWPU VHR-10 和 DIOR 数据集上的比较方法高出 5.9 和 2.4,这表明基于 Transformer 的方法打开了 RSI 对象检测的新窗口。因此,TRD 可以处理多个尺度的 RSI,并从 RSI 中识别出感兴趣的对象。