理解目标检测中的mAP与F1 Score

本文详细介绍了评估机器学习模型性能的关键指标,包括IoU、TP、TN、FP、FN、Precision、Recall、F1-Score及mAP的概念与计算方法。深入探讨了这些指标在计算机视觉任务,如目标检测中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总述
  • 要理解mAP与F1 Score需要一些前置条件,比如:IoU、FP、TP、FN、TN、AP等
IoU
  • 衡量监测框和标签框的重合程度。一张图就能解释。
  • 在这里插入图片描述
TP、TN、FP、FN
  • TP,即True Positives,表示样本被分为正样本且分配正确。
  • TN,即True Negatives,表示样本被分为样本且分配正确。
  • FP,即False Positives,表示样本被分为正样本但分配错误。
  • FN,即False Negatives,表示样本被分为负样本但分配错误。
    在这里插入图片描述
Precision
  • Precision,即精度,表示被正确分配的正样本数占总分配的正样本数的比例,公式为
  • P r e c i s i o n = T P ( T P + F P ) Precision=\frac{TP}{(TP+FP)} Precision=(TP+FP)TP
Recall
  • Recall,即召回率,表示被正确分配的正样本数占总正样本数的比例,公式为
  • R e c a l l = T P ( T P + F N ) Recall=\frac{TP}{(TP+FN)} Recall=(TP+FN)TP
F1-Score
  • F1-Score又称F1分数,是分类问题的一个衡量指标,常作为多分类问题的最终指标,它是精度和召回率的调和平均数。对于单个类别的F1分数,可使用如下公式计算
  • f 1 k = 2 R e c a l l k ∗ P r e c i s i o n k R e c a l l k + P r e c i s i o n k f1_k=2 \frac{Recall_k*Precision_k}{Recall_k+Precision_k } f1k=2Recallk+PrecisionkRecallkPrecisionk
  • 而后计算所有类别的平均值,记为F1,公式为
  • F 1 = ( 1 n Σ f 1 k ) 2 F1= (\frac{1}{n}\Sigma f1_k )^2 F1=(n1Σf1k)2
mAP
  • mAP,英文全称是mean Average Precision,即各类别AP的平均值,AP的计算使用了差值平均准确率的评测方法,即Precision-Recall曲线下的面积,公式为
  • A P = ( 1 n Σ ( r ∈ 1 n , 2 n … n − 1 n , 1 ) P i n t e r p o ( r ) ) AP=(\frac{1}{n}\Sigma_{(r∈{\frac{1}{n},\frac{2}{n}…\frac{n-1}{n},1})}{P_interpo (r)}) AP=(n1Σ(rn1,n2nn1,1)Pinterpo(r))
    其中n表示检测点的个数,P_interpo ®代表在召回率为r时准确率的数值。根据AP可计算mAP,公式为
  • m A P = ( 1 n Σ A P ) mAP=(\frac{1}{n} \Sigma {AP}) mAP=(n1ΣAP)
mAP计算过程:

  • 涉及到PR图,挖坑

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

椰子奶糖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值