定义了一个N*N的矩阵为迷宫,其中1为迷宫的墙,0为迷宫的路,即遇到0可以前进,遇到1不能继续前进。迷宫不能出界,因此初始设计迷宫时候利用1封闭迷宫(一个简单的避免出界的好方法)。迷宫入口和出口的定义就是矩阵的(1,1)位置和(N-1,N-1)位置。
主要利用栈的数据结构和递归的思想。可以让程序通过进栈出栈的尝试遍历所有从起点到终点的可能,找到所有可能路径。
#include<iostream>
using namespace std;
#define C 9
#define H 10
int num = 0;
int maze[C][H] = { { 1,1,1,1,1,1,1,1,1,1 },
{ 1,0,0,1,1,1,0,0,0,1 },
{ 1,1,0,0,0,0,0,0,0,1 },
{ 1,0,0,1,0,1,0,1,0,1 },
{ 1,0,1,1,0,1,1,1,0,1 },
{ 1,0,0,0,0,0,0,0,0,1 },
{ 1,1,1,1,1,1,1,0,0,1 },
{ 1,1,1,1,1,1,1,0,0,1 },
{ 1,1,1,1,1,1,1,1,1,1 } };
struct Road {//路线信息结构体
int x;
int y;
}R[100];
struct stack{//路线信息存放栈
Road road[100];
int top;//栈顶指针
}s[100];
bool isempty(stack* st) {//判断栈是不是空栈
if (st->top == -1)
return true;
return false;
}
void instack(stack *st,Road &r ) {//进栈操作
st->top++;
st->road[st->top] = r;
}
void outstack(stack *st,Road &r) {//结点出栈操作
r = st->road[st->top] ;
st->top--;
}
void freestack(stack* st) {//释放栈
st->top--;
}
int findroad(int x, int y, stack st) {//寻找迷宫通路,0可走,1不可走,(1,1)起点(C-1,H-1)终点
Road r,temp,record[100];
r.x = x;
r.y = y;//给信息结构体赋值
int nx, ny, n;
nx = x;
ny = y;
n = -1;
if (x == 7 && y == 8) {//结束递归调用的判断条件
num ++;//计数,一共有几个栈,方便下面比较
s[num-1] = st;//栈数组,用于判断最短路径
//出栈
while (!isempty(&st)) {
outstack(&st, r);
n++;
record[n] = r;
}
printf("第%d条迷宫路径为:(1,1)->",num);
for (; n >= 0; n--) {
cout<<"("<< record[n].x<<","<< record[n].y<<")";
if (n)cout<<"->";
}
cout<<"\n";
return num;
}
else {
for (int v = 0; v < 4; v++) {//4个方向循环执行,寻找可行路径
switch (v) {
case 0: { nx = x; ny = y + 1; break; }
case 1: { nx = x; ny = y - 1; break; }
case 2: { nx = x + 1; ny = y; break; }
case 3: { nx = x - 1; ny = y; break; }
}
if (maze[nx][ny] == 0) {//递归调用核心
temp.x = nx;
temp.y = ny;
maze[nx][ny] = 1;
instack(&st, temp);//已经确定是可以通过的地方先入栈
findroad(nx, ny, st);//递归调用findroad函数,下一层寻找结点
maze[nx][ny] = 0;
freestack(&st);
}
}
}
return num;//若没有通路直接返回0,有通路法返回通路条数
}
int main(){
for (int i = 0; i < C; i++) {
for (int j = 0; j < H; j++) {
cout << maze[i][j]<<' ';
}
cout << '\n';
}
int a;
stack *t,temp;
t = new stack;
temp .top=0;
t->top = -1;
a=findroad(1,1,*t);
if (a == 0)
cout<<"无路可走";
else if(a!=0){
for (int i = 0; i < a; i++)//寻找最短路径(top数值最小的栈)
{
for (int j = i + 1; j < a; j++) {
if (s[i].top > s[j].top) {
temp = s[i];
s[i] = s[j];
s[j] = temp;
}
}
}
cout<<"\n最短路径为:";
cout<<"(1,1)->";
for (int i = 0; i < s[0].top + 1; i++) {
cout<< "("<<s[0].road[i].x<<"," <<s[0].road[i].y<<")";
if (i != s[0].top) cout<<"->";
}
}
return 0;
}
运行截图: