-
左手坐标系和右手坐标系的区别在于,左手坐标系的Z轴是向里的,而右手坐标系的Z轴是向外的。
-
在Unity中,模型空间和世界空间使用左手坐标系,观察空间使用右手坐标系。
-
向量点积的几何意义是投影(可正可负)。
-
叉积的几何意义是计算两个向量组成的平行四边形的面积。
-
可逆矩阵即非奇异矩阵,不可逆矩阵即奇异矩阵。(行列式是否为0)
-
对于正交矩阵,矩阵的转置就是矩阵的逆。
-
标准正交基就是长度为1的正交基。
-
线性变换包括:旋转、缩放、错切、镜像、正交投影(平移不是)
-
仿射变换就是线性变换+平移变换。
-
平移矩阵:
-
缩放矩阵:
-
旋转矩阵:
绕Z旋转: -
复合变换:(先缩放,再旋转,再平移)
(旋转有两种,一种是坐标轴不旋转,一种是坐标轴跟着旋转,Unity使用前一种)。
我们已知子坐标空间C内3个坐标轴在父坐标空间P下的表示xc、yc、zc,以及其原点位置O。给定一个子坐标空间中的一点A=(a,b,c)。 -
如果上述矩阵是正交矩阵,那么
-
模型空间:某个模型的空间,当模型变换的时候,模型空间也变换。
-
世界空间:我们关心的最大空间,即游戏所能包含的最大空间。
-
观察空间:摄像机空间(右手坐标系)
-
模型变换:顶点变换的第一步即是将点从模型空间变换到世界空间。
-
观察变换:顶点变换的第二步即是将点从世界空间变换到观察空间。
-
第三部是从观察空间变换到裁剪空间。
-
观察空间是三维的,屏幕空间是二维的,从观察空间到屏幕空间需要投影操作。
-
正交投影(常用于2D游戏)和透视投影(常用于3D游戏)
透视投影
- 横纵比:
- 透视投影的投影矩阵
- 裁剪矩阵改变了坐标系的旋向性。
正交投影
- 正交投影的视锥体是一个长方体
- 从裁剪空间到屏幕空间:
(1)标准齐次除法:x,y,z除w(裁剪空间变为一个立方体)
- 获取Unity屏幕坐标的地方每太看懂