三角形不等式是几何学中的一个基本定理,指出对于任意三角形,其任意两边之和大于第三边。 – 证明步骤: 设定三角形的边长: 设三角形的三边分别为 (a)、(b) 和 (c),其中 (a)、(b)、(c) 都是正数,并且 (a \leq b \leq c)。 应用余弦定理: 余弦定理表明,对于任意三角形,边长和角度之间的关系为: c 2 = a 2 + b 2 − 2 a b cos ( θ ) c^2 = a^2 + b^2 - 2ab \cos(\theta) c2=a2+b2−