三角形不等式
是几何学中的一个基本定理,指出对于任意三角形,其任意两边之和大于第三边。
证明步骤:
-
设定三角形的边长:
设三角形的三边分别为 a a a、 b b b 和 c c c,其中 a a a、 b b b、 c c c 都是正数,并且 a ≤ b ≤ c a \leq b \leq c a≤b≤c。 -
应用余弦定理:
余弦定理表明,对于任意三角形,边长和角度之间的关系为:
c 2 = a 2 + b 2 − 2 a b cos ( θ ) c^2 = a^2 + b^2 - 2ab \cos(\theta) c2=a2+b2−2abcos(θ)
其中 θ \theta θ 是边 a a a 和 b b b 之间的夹角。 -
分析余弦定理的结果:
由于