如何推导三角形不等式

三角形不等式 是几何学中的一个基本定理,指出对于任意三角形,其任意两边之和大于第三边。


证明步骤:

  1. 设定三角形的边长
    设三角形的三边分别为 a a a b b b c c c,其中 a a a b b b c c c 都是正数,并且 a ≤ b ≤ c a \leq b \leq c abc

  2. 应用余弦定理
    余弦定理表明,对于任意三角形,边长和角度之间的关系为:
    c 2 = a 2 + b 2 − 2 a b cos ⁡ ( θ ) c^2 = a^2 + b^2 - 2ab \cos(\theta) c2=a2+b22abcos(θ)
    其中 θ \theta θ 是边 a a a b b b 之间的夹角。

  3. 分析余弦定理的结果
    由于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

司南锤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值