FlipCAM: A Feature-Level Flipping Augmentation Method for Weakly参考文献

在这里插入图片描述


参考文献列表

[1] R. Fan, F. Li, W. Han, J. Yan, J. Li, and L. Wang, “Fine-scale urban informal settlements mapping by fusing remote sensing images and building data via a transformer-based multimodal fusion network,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5630316.

中文翻译:[1] 范, R., 李, F., 韩, W., 严, J., 李, J., 和 王, L., “通过基于变换器的多模态融合网络融合遥感图像和建筑数据进行细尺度城市非正式定居点制图,” IEEE 地球科学与遥感汇刊, 卷 60, 2022, 文章编号 5630316.

[2] Z. Huang, G. Cheng, H. Wang, H. Li, L. Shi, and C. Pan, “Building extraction from multi-source remote sensing images via deep deconvolution neural networks,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2016, pp. 1835–1838.

中文翻译:[2] 黄, Z., 程, G., 王, H., 李, H., 石, L., 和 潘, C., “通过深度反卷积神经网络从多源遥感图像中提取建筑,” 在 IEEE 国际地球科学与遥感研讨会 (IGARSS) 论文集 中, 2016年7月, 页码 1835–1838.

[3] Y. Xie, A. Weng, and Q. Weng, “Population estimation of urban residential communities using remotely sensed morphologic data,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 5, pp. 1111–1115, May 2015.

中文翻译:[3] 谢, Y., 翁, A., 和 翁, Q., “使用遥感形态数据估计城市住宅社区的人口,” IEEE 地球科学与遥感快报, 卷 12, 第5期, 页码 1111–1115, 2015年5月.

[4] D. Marcos, M. Volpi, B. Kellenberger, and D. Tuia, “Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models,” ISPRS J. Photogramm. Remote Sens., vol. 145, pp. 96–107, Nov. 2018.

中文翻译:[4] 马科斯, D., 沃尔皮, M., 凯伦贝格尔, B., 和 图亚, D., “使用旋转等变CNN进行超高分辨率土地覆盖制图:迈向小型但准确的模型,” ISPRS 摄影测量与遥感杂志, 卷 145, 页码 96–107, 2018年11月.

[5] L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. A. Johnson, “Deep learning in remote sensing applications: A meta-analysis and review,” ISPRS J. Photogramm. Remote Sens., vol. 152, pp. 166–177, Jun. 2019.

中文翻译:[5] 马, L., 刘, Y., 张, X., 叶, Y., 阴, G., 和 约翰逊, B. A., “遥感应用中的深度学习:元分析与综述,” ISPRS 摄影测量与遥感杂志, 卷 152, 页码 166–177, 2019年6月.

[6] Q. Yuan et al., “Deep learning in environmental remote sensing: Achievements and challenges,” Remote Sens. Environ., vol. 241, May 2020, Art. no. 111716.

中文翻译:[6] 袁, Q. 等, “环境遥感中的深度学习:成就与挑战,” 遥感环境, 卷 241, 2020年5月, 文章编号 111716.

[7] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

中文翻译:[7] 龙, J., 谢尔哈默, E., 和 达雷尔, T., “用于语义分割的全卷积网络,” 在 IEEE 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2015年6月, 页码 3431–3440.

[8] S. Ji, S. Wei, and M. Lu, “Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 574–586, Jan. 2019.

中文翻译:[8] 纪, S., 韦, S., 和 卢, M., “用于从开放航拍和卫星图像数据集中提取多源建筑的全卷积网络,” IEEE 地球科学与遥感汇刊, 卷 57, 第1期, 页码 574–586, 2019年1月.

[9] Q. Zhu, C. Liao, H. Hu, X. Mei, and H. Li, “MAP-Net: Multiple attending path neural network for building footprint extraction from remote sensed imagery,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 7, pp. 6169–6181, Jul. 2021.

中文翻译:[9] 朱, Q., 廖, C., 胡, H., 梅, X., 和 李, H., “MAP-Net: 用于从遥感图像中提取建筑足迹的多关注路径神经网络,” IEEE 地球科学与遥感汇刊, 卷 59, 第7期, 页码 6169–6181, 2021年7月.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

中文翻译:[10] 丁, J., 董, W., 索彻, R., 李, L.-J., 李, K., 和 费-费, L., “ImageNet: 一个大规模层次化图像数据库,” 在 IEEE 计算机视觉与模式识别会议论文集 中, 2009年6月, 页码 248–255.

[11] H. Guo, Q. Shi, A. Marinoni, B. Du, and L. Zhang, “Deep building footprint update network: A semi-supervised method for updating existing building footprint from bi-temporal remote sensing images,” Remote Sens. Environ., vol. 264, Oct. 2021, Art. no. 112589.

中文翻译:[11] 郭, H., 石, Q., 马里诺尼, A., 杜, B., 和 张, L., “深度建筑足迹更新网络:一种用于从双时相遥感图像中更新现有建筑足迹的半监督方法,” 遥感环境, 卷 264, 2021年10月, 文章编号 112589.

[12] D. Muhtar, X. Zhang, and P. Xiao, “Index your position: A novel self-supervised learning method for remote sensing images semantic segmentation,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–11, 2022, Art. no. 4411511.

中文翻译:[12] 穆赫塔尔, D., 张, X., 和 小, P., “定位你的位置:一种用于遥感图像语义分割的新型自监督学习方法,” IEEE 地球科学与遥感汇刊, 卷 60, 页码 1–11, 2022年, 文章编号 4411511.

[13] H. Chen et al., “Structure-aware weakly supervised network for building extraction from remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5412712.

中文翻译:[13] 陈, H. 等, “结构感知的弱监督网络用于从遥感图像中提取建筑,” IEEE 地球科学与遥感汇刊, 卷 60, 2022年, 文章编号 5412712.

[14] Y. Sun, L. Mou, Y. Wang, and X. X. Zhu, “Bounding box regression network for building height retrieval using a single SAR image,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2022, pp. 56–59.

中文翻译:[14] 孙, Y., 牟, L., 王, Y., 和 朱, X. X., “用于单SAR图像建筑高度检索的边界框回归网络,” 在 IEEE 国际地球科学与遥感研讨会论文集 中, 2022年7月, 页码 56–59.

[15] X. Zhang, Z. Zheng, P. Xiao, Z. Li, and G. He, “Patch-based training of fully convolutional network for hyperspectral image classification with sparse point labels,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 8884–8897, 2022.

中文翻译:[15] 张, X., 郑, Z., 小, P., 李, Z., 和 何, G., “基于块的全卷积网络训练用于稀疏点标签的高光谱图像分类,” IEEE 选定主题应用地球观测与遥感杂志, 卷 15, 页码 8884–8897, 2022.

[16] Z. Li, X. Zhang, P. Xiao, and Z. Zheng, “On the effectiveness of weakly supervised semantic segmentation for building extraction from highresolution remote sensing imagery,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 3266–3281, 2021.

中文翻译:[16] 李, Z., 张, X., 小, P., 和 郑, Z., “弱监督语义分割在高分辨率遥感图像建筑提取中的有效性,” IEEE 选定主题应用地球观测与遥感杂志, 卷 14, 页码 3266–3281, 2021.

[17] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2921–2929.

中文翻译:[17] 周, B., 赫斯拉, A., 拉佩德里扎, A., 奥利瓦, A., 和 托拉尔巴, A., “用于判别定位的深度特征学习,” 在 IEEE 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2016年6月, 页码 2921–2929.

[18] A. Kolesnikov and C. H. Lampert, “Seed, expand and constrain: Three principles for weakly-supervised image segmentation,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2016, pp. 695–711.

中文翻译:[18] 科尔尼科夫, A., 和 羊皮灯, C. H., “种子、扩展和约束:弱监督图像分割的三个原则,” 在 欧洲计算机视觉会议 (ECCV) 论文集 中, 2016年, 页码 695–711.

[19] Z. Huang, X. Wang, J. Wang, W. Liu, and J. Wang, “Weakly-supervised semantic segmentation network with deep seeded region growing,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 7014–7023.

中文翻译:[19] 黄, Z., 王, X., 王, J., 刘, W., 和 王, J., “具有深度种子区域增长的弱监督语义分割网络,” 在 IEEE/CVF 计算机视觉与模式识别会议论文集 中, 2018年6月, 页码 7014–7023.

[20] S. Lee, M. Lee, J. Lee, and H. Shim, “Railroad is not a train: Saliency as pseudo-pixel supervision for weakly supervised semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 5491–5501.

中文翻译:[20] 李, S., 李, M., 李, J., 和 申, H., “铁路不是火车:显著性作为弱监督语义分割的伪像素监督,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2021年6月, 页码 5491–5501.

[21] L. Chan, M. S. Hosseini, and K. N. Plataniotis, “A comprehensive analysis of weakly-supervised semantic segmentation in different image domains,” Int. J. Comput. Vis., vol. 129, no. 2, pp. 361–384, Feb. 2021.

中文翻译:[21] 陈, L., 胡塞尼, M. S., 和 普拉塔尼奥蒂斯, K. N., “不同图像域中弱监督语义分割的全面分析,” 国际计算机视觉杂志, 卷 129, 第2期, 页码 361–384, 2021年2月.

[22] D. He and Y. Zhong, “Deep hierarchical pyramid network with highfrequency-aware differential architecture for super-resolution mapping,” IEEE Trans. Geosci. Remote Sens., vol. 61, 2023, Art. no. 5503815.

中文翻译:[22] 何, D., 和 钟, Y., “具有高频感知差分架构的深度层次金字塔网络用于超分辨率制图,” IEEE 地球科学与遥感汇刊, 卷 61, 2023年, 文章编号 5503815.

[23] D. He, Q. Shi, X. Liu, Y. Zhong, G. Xia, and L. Zhang, “Generating annual high resolution land cover products for 28 metropolises in China based on a deep super-resolution mapping network using Landsat imagery,” GISci. Remote Sens., vol. 59, no. 1, pp. 2036–2067, Dec. 2022.

中文翻译:[23] 何, D., 石, Q., 刘, X., 钟, Y., 夏, G., 和 张, L., “基于Landsat图像的深度超分辨率制图网络生成中国28个大城市的年度高分辨率土地覆盖产品,” 地理信息系统与遥感科学, 卷 59, 第1期, 页码 2036–2067, 2022年12月.

[24] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields: Probabilistic models for segmenting and labeling sequence data,” in Proc. 18th Int. Conf. Mach. Learn., 2001, pp
. 282–289.

中文翻译:[24] 拉弗蒂, J., 麦考勒姆, A., 和 佩雷拉, F., “条件随机场:用于序列数据分割和标注的概率模型,” 在 第18届国际机器学习会议论文集 中, 2001年, 页码 282–289.

[25] A. Obukhov, S. Georgoulis, D. Dai, and L. Van Gool, “Gated CRF loss for weakly supervised semantic image segmentation,” 2019, arXiv:1906.04651.

中文翻译:[25] 奥布霍夫, A., 乔治乌利斯, S., 戴, D., 和 范古尔, L., “用于弱监督语义图像分割的门控CRF损失,” 2019年, arXiv:1906.04651.

[26] B. Zhang, J. Xiao, Y. Wei, M. Sun, and K. Huang, “Reliability does matter: An end-to-end weakly supervised semantic segmentation approach,” in Proc. AAAI Conf. Artif. Intell., Apr. 2020, vol. 34, no. 7, pp. 12765–12772.

中文翻译:[26] 张, B., 肖, J., 韦, Y., 孙, M., 和 黄, K., “可靠性很重要:一种端到端的弱监督语义分割方法,” 在 AAAI 人工智能会议论文集 中, 2020年4月, 卷 34, 第7期, 页码 12765–12772.

[27] J. Ahn and S. Kwak, “Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 4981–4990.

中文翻译:[27] 哦, J., 和 姚, S., “用图像级监督学习像素级语义亲和力用于弱监督语义分割,” 在 IEEE/CVF 计算机视觉与模式识别会议论文集 中, 2018年6月, 页码 4981–4990.

[28] J. Ahn, S. Cho, and S. Kwak, “Weakly supervised learning of instance segmentation with inter-pixel relations,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2204–2213.

中文翻译:[28] 哦, J., 乔, S., 和 姚, S., “用像素间关系进行弱监督实例分割学习,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2019年6月, 页码 2204–2213.

[29] B. Zhang, J. Xiao, J. Jiao, Y. Wei, and Y. Zhao, “Affinity attention graph neural network for weakly supervised semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 11, pp. 8082–8096, Nov. 2022.

中文翻译:[29] 张, B., 肖, J., 乔, J., 韦, Y., 和 赵, Y., “用于弱监督语义分割的亲和注意力图神经网络,” IEEE 模式分析与机器智能汇刊, 卷 44, 第11期, 页码 8082–8096, 2022年11月.

[30] J. Fan, Z. Zhang, T. Tan, C. Song, and J. Xiao, “CIAN: Cross-image affinity net for weakly supervised semantic segmentation,” in Proc. AAAI Conf. Artif. Intell., vol. 34, 2020, pp. 10762–10769.

中文翻译:[30] 范, J., 张, Z., 谭, T., 宋, C., 和 肖, J., “CIAN: 用于弱监督语义分割的跨图像亲和网络,” 在 AAAI 人工智能会议论文集 中, 卷 34, 2020年, 页码 10762–10769.

[31] L. Ru, Y. Zhan, B. Yu, and B. Du, “Learning affinity from attention: Endto-end weakly-supervised semantic segmentation with transformers,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 16825–16834.

中文翻译:[31] 如, L., 战, Y., 于, B., 和 杜, B., “从注意力中学习亲和力:用变换器进行端到端弱监督语义分割,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2022年6月, 页码 16825–16834.

[32] L. Xu, W. Ouyang, M. Bennamoun, F. Boussaid, F. Sohel, and D. Xu, “Leveraging auxiliary tasks with affinity learning for weakly supervised semantic segmentation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 6964–6973.

中文翻译:[32] 徐, L., 欧阳, W., 本纳蒙, M., 布萨德, F., 索赫尔, F., 和 徐, D., “利用亲和学习的辅助任务进行弱监督语义分割,” 在 IEEE/CVF 国际计算机视觉会议 (ICCV) 论文集 中, 2021年10月, 页码 6964–6973.

[33] X. Zhang et al., “Adaptive affinity loss and erroneous pseudo-label refinement for weakly supervised semantic segmentation,” in Proc. 29th ACM Int. Conf. Multimedia, Oct. 2021, pp. 5463–5472.

中文翻译:[33] 张, X. 等, “自适应亲和损失和错误伪标签细化用于弱监督语义分割,” 在 第29届ACM国际多媒体会议论文集 中, 2021年10月, 页码 5463–5472.

[34] J. Chen, S. Fang, H. Xie, Z.-J. Zha, Y. Hu, and J. Tan, “End-to-end boundary exploration for weakly-supervised semantic segmentation,” in Proc. 29th ACM Int. Conf. Multimedia, Oct. 2021, pp. 2381–2390.

中文翻译:[34] 陈, J., 方, S., 谢, H., 章, Z.-J., 胡, Y., 和 谭, J., “端到端边界探索用于弱监督语义分割,” 在 第29届ACM国际多媒体会议论文集 中, 2021年10月, 页码 2381–2390.

[35] L. Chen, W. Wu, C. Fu, X. Han, and Y. Zhang, “Weakly supervised semantic segmentation with boundary exploration,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2020, pp. 347–362.

中文翻译:[35] 陈, L., 吴, W., 傅, C., 韩, X., 和 张, Y., “具有边界探索的弱监督语义分割,” 在 欧洲计算机视觉会议 (ECCV) 论文集 中, 2020年, 页码 347–362.

[36] J. Liu, J. Zhang, Y. Hong, and N. Barnes, “Learning structure-aware semantic segmentation with image-level supervision,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2021,
pp. 1–8.

中文翻译:[36] 刘, J., 张, J., 洪, Y., 和 巴恩斯, N., “用图像级监督学习结构感知语义分割,” 在 国际神经网络联合会议 (IJCNN) 论文集 中, 2021年7月, 页码 1–8.

[37] J. Wei, Q. Wang, Z. Li, S. Wang, S. K. Zhou, and S. Cui, “Shallow feature matters for weakly supervised object localization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 5989–5997.

中文翻译:[37] 韦, J., 王, Q., 李, Z., 王, S., 周, S. K., 和 崔, S., “浅层特征对弱监督目标定位很重要,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2021年6月, 页码 5989–5997.

[38] W. Shimoda and K. Yanai, “Self-supervised difference detection for weakly-supervised semantic segmentation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 5207–5216.

中文翻译:[38] 下田, W., 和 柳井, K., “用于弱监督语义分割的自监督差异检测,” 在 IEEE/CVF 国际计算机视觉会议 (ICCV) 论文集 中, 2019年10月, 页码 5207–5216.

[39] S. Jo and I.-J. Yu, “Puzzle-CAM: Improved localization via matching partial and full features,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2021, pp. 639–643.

中文翻译:[39] 乔, S., 和 尤, I.-J., “Puzzle-CAM: 通过匹配部分和完整特征改进定位,” 在 IEEE 国际图像处理会议 (ICIP) 论文集 中, 2021年9月, 页码 639–643.

[40] S.-H. Yoon, H. Kweon, J. Jeong, H. Kim, S. Kim, and K.-J. Yoon, “Exploring pixel-level self-supervision for weakly supervised semantic segmentation,” 2021, arXiv:2112.05351.

中文翻译:[40] 俞, S.-H., 崔, H., 丁, J., 金, H., 金, S., 和 俞, K.-J., “探索用于弱监督语义分割的像素级自监督,” 2021年, arXiv:2112.05351.

[41] Q. Chen, L. Yang, J. Lai, and X. Xie, “Self-supervised image-specific prototype exploration for weakly supervised semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 4278–4288.

中文翻译:[41] 陈, Q., 杨, L., 来, J., 和 谢, X., “用于弱监督语义分割的自监督图像特定原型探索,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2022年6月, 页码 4278–4288.

[42] Y. Wang, J. Zhang, M. Kan, S. Shan, and X. Chen, “Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 12272–12281.

中文翻译:[42] 王, Y., 张, J., 康, M., 山, S., 和 陈, X., “用于弱监督语义分割的自监督等变注意力机制,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2020年6月, 页码 12272–12281.

[43] J. Lee, E. Kim, and S. Yoon, “Anti-adversarially manipulated attributions for weakly and semi-supervised semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 4070–4078.

中文翻译:[43] 李, J., 金, E., 和 月, S., “用于弱监督和半监督语义分割的反对抗性操作归因,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2021年6月, 页码 4070–4078.

[44] J. Lee, J. Choi, J. Mok, and S. Yoon, “Reducing information bottleneck for weakly supervised semantic segmentation,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021, pp. 27408–27421.

中文翻译:[44] 李, J., 乔, J., 莫克, J., 和 月, S., “减少弱监督语义分割的信息瓶颈,” 在 神经信息处理系统进展会议论文集 中, 卷 34, 2021年, 页码 27408–27421.

[45] J. Fan, Z. Zhang, and T. Tan, “Learning integral objects with intra-class discriminator for weakly-supervised semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 4282–4291.

中文翻译:[45] 范, J., 张, Z., 和 谭, T., “用类内判别器学习整体对象用于弱监督语义分割,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2020年6月, 页码 4282–4291.

[46] J. Fan, Z. Zhang, and T. Tan, “Employing multi-estimations for weakly-supervised semantic segmentation,” in Proc. Eur. Conf. Comput. Vis. (ECCV), vol. 12362, 2020, pp. 332–348.

中文翻译:[46] 范, J., 张, Z., 和 谭, T., “为弱监督语义分割采用多估计,” 在 欧洲计算机视觉会议 (ECCV) 论文集 中, 卷 12362, 2020年, 页码 332–348.

[47] H. Xue, C. Liu, F. Wan, J. Jiao, X. Ji, and Q. Ye, “DANet: Divergent activation for weakly supervised object localization,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6588–6597.

中文翻译:[47] 薛, H., 刘, C., 万, F., 乔, J., 吉, X., 和 叶, Q., “DANet: 用于弱监督目标定位的发散激活,” 在 IEEE/CVF 国际计算机视觉会议 (ICCV) 论文集 中, 2019年10月, 页码 6588–6597.

[48] P.-T. Jiang, L.-H. Han, Q. Hou, M.-M. Cheng, and Y. Wei, “Online attention accumulation for weakly supervised semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 10, pp. 7062–7077, Oct. 2022.

中文翻译:[48] 江, P.-T., 韩, L.-H., 侯, Q., 程, M.-M., 和 韦, Y., “用于弱监督语义分割的在线注意力积累,” IEEE 模式分析与机器智能汇刊, 卷 44, 第10期, 页码 7062–7077, 2022年10月.

[49] J. Lee, E. Kim, S. Lee, J. Lee, and S. Yoon, “FickleNet: Weakly and semi-supervised semantic image segmentation using stochastic inference,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 5262–5271.

中文翻译:[49] 李, J., 金, E., 李, S., 李, J., 和 月, S., “FickleNet: 使用随机推断进行弱监督和半监督语义图像分割,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2019年6月, 页码 5262–5271.

[50] K. Sun, H. Shi, Z. Zhang, and Y. Huang, “ECS-Net: Improving weakly supervised semantic segmentation by using connections between class activation maps,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 7263–7272.

中文翻译:[50] 孙, K., 石, H., 张, Z., 和 黄, Y., “ECS-Net: 通过使用类激活图之间的连接改进弱监督语义分割,” 在 IEEE/CVF 国际计算机视觉会议 (ICCV) 论文集 中, 2021年10月, 页码 7263–7272.

[51] Y.-T. Chang, Q. Wang, W.-C. Hung, R. Piramuthu, Y.-H. Tsai, and M.-H. Yang, “Weakly-supervised semantic segmentation via subcategory exploration,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 8988–8997.

中文翻译:[51] 张, Y.-T., 王, Q., 香港, W.-C., 皮拉穆图, R., 蔡, Y.-H., 和 杨, M.-H., “通过子类别探索进行弱监督语义分割,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2020年6月, 页码 8988–8997.

[52] Z. Chen, T. Wang, X. Wu, X.-S. Hua, H. Zhang, and Q. Sun, “Class reactivation maps for weakly-supervised semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 959–968.

中文翻译:[52] 陈, Z., 王, T., 武, X., 华, X.-S., 张, H., 和 孙, Q., “用于弱监督语义分割的类重激活图,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2022年6月, 页码 959–968.

[53] P. Wu, W. Zhai, and Y. Cao, “Background activation suppression for weakly supervised object localization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 14228–14237.

中文翻译:[53] 吴, P., 翟, W., 和 曹, Y., “用于弱监督目标定位的背景激活抑制,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2022年6月, 页码 14228–14237.

[54] Y. Yao et al., “Non-salient region object mining for weakly supervised semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 2623–2632.

中文翻译:[54] 姚, Y. 等, “用于弱监督语义分割的非显著区域对象挖掘,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2021年6月, 页码 2623–2632.

[55] X. Li, T. Zhou, J. Li, Y. Zhou, and Z. Zhang, “Group-wise semantic mining for weakly supervised semantic segmentation,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 1984–1992.

中文翻译:[55] 李, X., 周, T., 李, J., 周, Y., 和 张, Z., “用于弱监督语义分割的分组语义挖掘,” 在 AAAI 人工智能会议论文集 中, 2020年, 页码 1984–1992.

[56] S.-Y. Pan, C.-Y. Lu, S.-P. Lee, and W.-H. Peng, “Weakly-supervised image semantic segmentation using graph convolutional networks,” in Proc. IEEE Int. Conf. Multimedia Expo (ICME), Jul. 2021, pp. 1–6.

中文翻译:[56] 潘, S.-Y., 陆, C.-Y., 李, S.-P., 和 彭, W.-H., “使用图卷积网络的弱监督图像语义分割,” 在 IEEE 国际多媒体博览会 (ICME) 论文集 中, 2021年7月, 页码 1–6.

[57] K. Zhang, S. Chen, Q. Ju, Y. Jiang, Y. Li, and X. He, “Maximize the exploration of congeneric semantics for weakly supervised semantic segmentation,” 2021, arXiv:2110.03982.

中文翻译:[57] 张, K., 陈, S., 居, Q., 江, Y., 李, Y., 和 何, X., “最大化对同源语义的探索用于弱监督语义分割,” 2021年, arXiv:2110.03982.

[58] Y. Li, Y. Duan, Z. Kuang, Y. Chen, W. Zhang, and X. Li, “Uncertainty estimation via response scaling for pseudo-mask noise mitigation in weakly-supervised semantic segmentation,” in Proc. AAAI Conf. Artif. Intell., 2022, pp. 1447–1455.

中文翻译:[58] 李, Y., 段, Y., 况, Z., 陈, Y., 张, W., 和 李, X., “通过响应缩放进行不确定性估计以减少弱监督语义分割中伪掩码噪声,” 在 AAAI 人工智能会议论文集 中, 2022年, 页码 1447–1455.

[59] J. Xie, J. Xiang, J. Chen, X. Hou, X. Zhao, and L. Shen, “C2AM: Contrastive learning of class-agnostic activation map for weakly supervised object localization and semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 979–988.

中文翻译:[59] 谢, J., 向, J., 陈, J., 侯, X., 赵, X., 和 沈, L., “C2AM: 用于弱监督目标定位和语义分割的类不可知激活图的对比学习,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2022年6
月, 页码 979–988.

[60] D. Zhang, H. Zhang, J. Tang, X.-S. Hua, and Q. Sun, “Causal intervention for weakly-supervised semantic segmentation,” in Proc. Adv. Neural Inf. Process. Syst., 2020, pp. 655–666.

中文翻译:[60] 张, D., 张, H., 唐, J., 华, X.-S., 和 孙, Q., “用于弱监督语义分割的因果干预,” 在 神经信息处理系统进展会议论文集 中, 2020年, 页码 655–666.

[61] T. Wu et al., “Embedded discriminative attention mechanism for weakly supervised semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 16760–16769.

中文翻译:[61] 吴, T. 等, “用于弱监督语义分割的嵌入式判别注意力机制,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2021年6月, 页码 16760–16769.

[62] R. Li, Z. Mai, Z. Zhang, J. Jang, and S. Sanner, “TransCAM: Transformer attention-based CAM refinement for weakly supervised semantic segmentation,” J. Vis. Commun. Image Represent., vol. 92, Apr. 2023, Art. no. 103800.

中文翻译:[62] 李, R., 麦, Z., 张, Z., 蒋, J., 和 桑纳, S., “TransCAM: 基于变换器注意力的CAM细化用于弱监督语义分割,” 视觉通信与图像表示杂志, 卷 92, 2023年4月, 文章编号 103800.

[63] W. Gao et al., “TS-CAM: Token semantic coupled attention map for weakly supervised object localization,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 2866–2875.

中文翻译:[63] 高, W. 等, “TS-CAM: 用于弱监督目标定位的令牌语义耦合注意力图,” 在 IEEE/CVF 国际计算机视觉会议 (ICCV) 论文集 中, 2021年10月, 页码 2866–2875.

[64] J. Choe and H. Shim, “Attention-based dropout layer for weakly supervised object localization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2214–2223.

中文翻译:[64] 乔, J., 和 申, H., “用于弱监督目标定位的基于注意力的dropout层,” 在 IEEE/CVF 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2019年6月, 页码 2214–2223.

[65] C. Liu, E. Xie, W. Wang, W. Wang, G. Li, and P. Luo, “WegFormer: Transformers for weakly supervised semantic segmentation,” 2022, arXiv:2203.08421.

中文翻译:[65] 刘, C., 谢, E., 王, W., 王, W., 李, G., 和 罗, P., “WegFormer: 用于弱监督语义分割的变换器,” 2022年, arXiv:2203.08421.

[66] B. Kim, S. Han, and J. Kim, “Discriminative region suppression for weakly-supervised semantic segmentation,” in Proc. AAAI Conf. Artif. Intell., 2021, pp. 1754–1761.

中文翻译:[66] 金, B., 韩, S., 和 金, J., “用于弱监督语义分割的判别区域抑制,” 在 AAAI 人工智能会议论文集 中, 2021年, 页码 1754–1761.

[67] J. Qin, J. Wu, X. Xiao, L. Li, and X. Wang, “Activation modulation and recalibration scheme for weakly supervised semantic segmentation,” in Proc. AAAI Conf. Artif. Intell., 2022, pp. 2117–2125.

中文翻译:[67] 秦, J., 吴, J., 肖, X., 李, L., 和 王, X., “用于弱监督语义分割的激活调制和重校准方案,” 在 AAAI 人工智能会议论文集 中, 2022年, 页码 2117–2125.

[68] W. Sun, J. Zhang, Z. Liu, Y. Zhong, and N. Barnes, “GETAM: Gradient-weighted element-wise transformer attention map for weakly-supervised semantic segmentation,” 2021, arXiv:2112.02841.

中文翻译:[68] 孙, W., 张, J., 刘, Z., 钟, Y., 和 巴恩斯, N., “GETAM: 用于弱监督语义分割的梯度加权元素级变换器注意力图,” 2021年, arXiv:2112.02841.

[69] S. Wang, W. Chen, S. M. Xie, G. Azzari, and D. B. Lobell, “Weakly supervised deep learning for segmentation of remote sensing imagery,” Remote Sens., vol. 12, no. 2, p. 207, Jan. 2020.

中文翻译:[69] 王, S., 陈, W., 谢, S. M., 阿扎里, G., 和 洛贝尔, D. B., “用于遥感图像分割的弱监督深度学习,” 遥感, 卷 12, 第2期, 页码 207, 2020年1月.

[70] Y. Li, Y. Zhang, X. Huang, and A. L. Yuille, “Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images,” ISPRS J. Photogramm. Remote Sens., vol. 146, pp. 182–196, Dec. 2018.

中文翻译:[70] 李, Y., 张, Y., 黄, X., 和 尤里尔, A. L., “在场景级监督下的深度网络用于多类地理空间目标检测,” ISPRS 摄影测量与遥感杂志, 卷 146, 页码 182–196, 2018年12月.

[71] Y. Li, W. Chen, Y. Zhang, C. Tao, R. Xiao, and Y. Tan, “Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning,” Remote Sens. Environ., vol. 250, Dec. 2020, Art. no. 112045.

中文翻译:[71] 李, Y., 陈, W., 张, Y., 陶, C., 肖, R., 和 谭, Y., “通过弱监督深度学习在高分辨率遥感图像中准确检测云层,” 遥感环境, 卷 250, 2020年12月, 文章编号 112045.

[72] K. Fu et al., “WSF-NET: Weakly supervised feature-fusion network for binary segmentation in remote sensing image,” Remote Sens., vol. 10, no. 12, p. 1970, Dec. 2018.

中文翻译:[72] 傅, K. 等, “WSF-NET: 用于遥感图像二元分割的弱监督特征融合网络,” 遥感, 卷 10, 第12期, 页码 1970,
2018年12月.

[73] Y. Cao and X. Huang, “A coarse-to-fine weakly supervised learning method for green plastic cover segmentation using high-resolution remote sensing images,” ISPRS J. Photogramm. Remote Sens., vol. 188, pp. 157–176, Jun. 2022.

中文翻译:[73] 曹, Y., 和 黄, X., “一种用于高分辨率遥感图像中绿色塑料覆盖分割的粗到细弱监督学习方法,” ISPRS 摄影测量与遥感杂志, 卷 188, 页码 157–176, 2022年6月.

[74] J. Zhang, X. Jia, and J. Hu, “SP-RAN: Self-paced residual aggregated network for solar panel mapping in weakly labeled aerial images,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5612715.

中文翻译:[74] 张, J., 贾, X., 和 胡, J., “SP-RAN: 用于弱标记航拍图像中太阳能电池板制图的自适应残差聚合网络,” IEEE 地球科学与遥感汇刊, 卷 60, 2022年, 文章编号 5612715.

[75] M. U. Ali, W. Sultani, and M. Ali, “Destruction from sky: Weakly supervised approach for destruction detection in satellite imagery,” ISPRS J. Photogramm. Remote Sens., vol. 162, pp. 115–124, Apr. 2020.

中文翻译:[75] 阿里, M. U., 硫塔尼, W., 和 阿里, M., “从天而降的破坏:用于卫星图像中破坏检测的弱监督方法,” ISPRS 摄影测量与遥感杂志, 卷 162, 页码 115–124, 2020年4月.

[76] J. Chen, F. He, Y. Zhang, G. Sun, and M. Deng, “SPMF-Net: Weakly supervised building segmentation by combining superpixel pooling and multi-scale feature fusion,” Remote Sens., vol. 12, no. 6, p. 1049, Mar. 2020.

中文翻译:[76] 陈, J., 何, F., 张, Y., 孙, G., 和 邓, M., “SPMF-Net: 结合超像素池化和多尺度特征融合的弱监督建筑分割,” 遥感, 卷 12, 第6期, 页码 1049, 2020年3月.

[77] F. Fang et al., “Improved pseudomasks generation for weakly supervised building extraction from high-resolution remote sensing imagery,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 1629–1642, 2022.

中文翻译:[77] 方, F. 等, “改进的伪掩码生成用于高分辨率遥感图像中的弱监督建筑提取,” IEEE 选定主题应用地球观测与遥感杂志, 卷 15, 页码 1629–1642, 2022.

[78] Q. Su, X. Zhang, P. Xiao, Z. Li, and W. Wang, “Which CAM is better for extracting geographic objects? A perspective from principles and experiments,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 5623–5635, 2022.

中文翻译:[78] 苏, Q., 张, X., 小, P., 李, Z., 和 王, W., “哪种CAM更适合提取地理对象?从原理和实验的角度看,” IEEE 选定主题应用地球观测与遥感杂志, 卷 15, 页码 5623–5635, 2022.

[79] X. Yan, L. Shen, J. Wang, X. Deng, and Z. Li, “MSG-SR-Net: A weakly supervised network integrating multiscale generation and superpixel refinement for building extraction from high-resolution remotely sensed imageries,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 1012–1023, 2022.

中文翻译:[79] 严, X., 沈, L., 王, J., 邓, X., 和 李, Z., “MSG-SR-Net: 用于从高分辨率遥感图像中提取建筑的弱监督网络, 集成多尺度生成和超像素细化,” IEEE 选定主题应用地球观测与遥感杂志, 卷 15, 页码 1012–1023, 2022.

[80] L. Zhang, J. Ma, X. Lv, and D. Chen, “Hierarchical weakly supervised learning for residential area semantic segmentation in remote sensing images,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 1, pp. 117–121, Jan. 2020.

中文翻译:[80] 张, L., 马, J., 吕, X., 和 陈, D., “用于遥感图像中住宅区语义分割的层次化弱监督学习,” IEEE 地球科学与遥感快报, 卷 17, 第1期, 页码 117–121, 2020年1月.

[81] J. Zhou, Y. Zheng, J. Tang, L. Jian, and Z. Yang, “FlipDA: Effective and robust data augmentation for few-shot learning,” in Proc. 60th Annu. Meeting Assoc. Comput. Linguistics, 2022, pp. 8646–8665.

中文翻译:[81] 周, J., 郑, Y., 唐, J., 建, L., 和 杨, Z., “FlipDA: 有效的少样本学习数据增强方法,” 在 第60届年会计算机语言学协会会议论文集 中, 2022年, 页码 8646–8665.

[82] M. Gardner et al., “Evaluating models’ local decision boundaries via contrast sets,” in Proc. ACL, 2020, pp. 1307–1323.

中文翻译:[82] 加德纳, M. 等, “通过对比集评估模型的局部决策边界,” 在 ACL会议论文集 中, 2020年, 页码 1307–1323.

[83] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man, Cybern., vol. SMC-9, no. 1, pp. 62–66, Jan. 1979.

中文翻译:[83] 大津, N., “从灰度直方图中选择阈值的方法,” IEEE 系统、人与控制论汇刊, 卷 SMC-9, 第1期, 页码 62–66, 1979年1月.

[84] F. Rottensteiner, G. Sohn, M. Gerke, and J. D. Wegner, “International society for photogrammetry and remote sensing: 2D semantic labeling challenge. Working group III/4—3D scene analysis,” ISPRS, Leopoldshöhe, Germany, 2014, vol. 1, no. 4.

中文翻译:[84] 罗滕施泰纳, F., 索恩, G., 格尔克, M., 和 韦格纳, J. D., “国际摄影测量与遥感学会:2D语义标注挑战. 第III/4工作组——3D场景分析,” ISPRS, 莱奥波德肖, 德国, 2014年, 卷 1, 第4期.

[85] Q. Chen, L. Wang, Y. Wu, G. Wu, Z. Guo, and S. L. Waslander, “TEMPORARY REMOVAL: Aerial imagery for roof segmentation: A large-scale dataset towards automatic mapping of buildings,” ISPRS J. Photogramm. Remote Sens., vol. 147, pp. 42–55, Jan. 2019.

中文翻译:[85] 陈, Q., 王, L., 吴, Y., 吴, G., 郭, Z., 和 瓦斯兰德, S. L., “临时移除:屋顶分割航拍图像:用于建筑自动制图的大规模数据集,” ISPRS 摄影测量与遥感杂志, 卷 147, 页码 42–55, 2019年1月.

[86] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2015, pp. 770–778.

中文翻译:[86] 何, K., 张, X., 任, S., 和 孙, J., “用于图像识别的深度残差学习,” 在 IEEE 计算机视觉与模式识别会议 (CVPR) 论文集 中, 2015年7月, 页码 770–778.

[87] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for visual recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015.

中文翻译:[87] 何, K., 张, X., 任, S., 和 孙, J., “深度卷积网络中的空间金字塔池化用于视觉识别,” IEEE 模式分析与机器智能汇刊, 卷 37, 第9期, 页码 1904–1916, 2015年9月.

[88] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder–decoder with Atrous separable convolution for semantic image segmentation,” in Proc. 15th Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 833–851.

中文翻译:[88] 陈, L.-C., 朱, Y., 帕帕纳德鲁, G., 施罗夫, F., 和 亚当, H., “用于语义图像分割的编码器-解码器与Atrous可分离卷积,” 在 第15届欧洲计算机视觉会议 (ECCV) 论文集 中, 2018年, 页码 833–851.

[89] K. K. Singh and Y. J. Lee, “Hide-and-seek: Forcing a network to be meticulous for weakly-supervised object and action localization,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 3544–3553.

中文翻译:[89] 辛格, K. K., 和 李, Y. J., “捉迷藏:迫使网络在弱监督目标和动作定位中更加细致,” 在 IEEE 国际计算机视觉会议 (ICCV) 论文集 中, 2017年10月, 页码 3544–3553.

[90] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data augmentation,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 13001–13008.

中文翻译:[90] 钟, Z., 郑, L., 康, G., 李, S., 和 杨, Y., “随机擦除数据增强,” 在 AAAI 人工智能会议论文集 中, 2020年, 页码 13001–13008.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

司南锤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值