matlab构造自变量

for j=1:100
A{1,j}=['x',num2str(j)];
B{1,j}=['s',num2str(j)];
C{1,j}=['r',num2str(j)];
end
for j=1:20
    for i=1:10
    A(i,j)=sym(['a',num2str(i),num2str(j)]);
    end
end

 

http://zhidao.baidu.com/question/1924787027883962467/answer/1756413538

N = 5;
X = sym(zeros(N));
for i=1:N
    for j=1:N
        cmd = sprintf('sym(''X%i%i'')',i,j);
        X(i,j) = eval(cmd);
    end
end
X


1、想要不同的维数,修改N即可。

2、为避免歧义,最好改一下符号的格式。
例如,按照现在的写法,X111究竟是指X(11,1)还是X(1,11)?
建议使用类似 X_i_j 这类符号,
代码中相应的语句改为:cmd = sprintf('sym(''X_%i_%i'')',i,j);
 n=9;
 xx=sym('x',[1,n])

Matlab构造稀疏自编码器,你可以按照以下步骤进行: 1. 导入数据:首先,你需要准备你的训练数据。假设你的数据存储在一个变量 `data` 中。 2. 构建编码器:使用 `fullyConnectedLayer` 和 `reluLayer` 函数构建编码器的隐藏层。例如,如果你想构建一个有两个隐藏层的编码器,每个隐藏层的大小为100: ```matlab encoderLayers = [ fullyConnectedLayer(100) reluLayer() fullyConnectedLayer(100) reluLayer() ]; ``` 3. 构建解码器:使用 `fullyConnectedLayer` 和 `reluLayer` 函数构建解码器的隐藏层。解码器的隐藏层大小应与编码器相对应。例如: ```matlab decoderLayers = [ fullyConnectedLayer(100) reluLayer() fullyConnectedLayer(size(data, 1)) ]; ``` 4. 构建自编码器:使用 `autoencoder` 函数将编码器和解码器组合成一个自编码器模型。例如: ```matlab autoenc = autoencoder(encoderLayers, decoderLayers); ``` 5. 设置训练参数:使用 `trainingOptions` 函数设置训练参数,包括迭代次数、学习率等。例如: ```matlab options = trainingOptions('adam', 'MaxEpochs', 10, 'InitialLearnRate', 0.001); ``` 6. 训练自编码器:使用 `trainAutoencoder` 函数训练自编码器模型。例如: ```matlab trainedAutoenc = trainAutoencoder(data, autoenc, options); ``` 7. 使用训练好的自编码器进行重构:通过将输入数据传递给训练好的自编码器模型,可以获得重构后的输出。例如: ```matlab reconstructedData = predict(trainedAutoenc, data); ``` 这样,你就可以使用Matlab构造一个稀疏自编码器,并使用它进行数据重构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值