卡尔曼讲解与各种典型进阶MATLAB编程
文章平均质量分 78
以原始的KF为基准,探索可以使用卡尔曼滤波的范围,并由KF引申出EKF、UKF、CKF、CDKF、AUKF(自适应UKF)、ACKF等多个典型的进阶版本
余额抵扣
助学金抵扣
还需支付
¥59.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
MATLAB卡尔曼
所有代码如运行有问题,可私信博主
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
卡尔曼讲解与各种典型进阶MATLAB编程(专栏目录,持续更新……)
本专栏旨在深入探讨卡尔曼滤波及其在各类应用中的实现,尤其是通过MATLAB编程进行的典型案例分析。卡尔曼滤波是一种高效的递归滤波器,广泛用于信号处理、控制系统和导航等领域,能够有效地从噪声数据中提取有用的信息。卡尔曼滤波基础:详细介绍卡尔曼滤波的原理、数学背景及基本概念,帮助读者建立坚实的理论基础。进阶应用案例:通过一系列典型的MATLAB编程示例,展示卡尔曼滤波在不同领域(如机器人定位、目标跟踪和传感器融合等)中的实际应用。代码实现与优化。原创 2024-10-18 10:57:19 · 631 阅读 · 0 评论
-
基于扩展卡尔曼滤波(EKF)的四维非线性状态估计示例,非线性系统,观测为速度和位置。MATLAB的完整代码,粘贴到MATLAB中即可运行
完整MATLAB代码。二维平面上的滤波,强非线性系统,状态为位置和速度原创 2025-12-11 07:42:14 · 34 阅读 · 0 评论 -
【Sage Husa EKF代码】一维非线性状态、非线性观测的Sage Husa自适应EKF,MATLAB代码|订阅专栏后,可直接查看源代码
本文提出了一种基于Sage-Husa自适应EKF的方法,用于解决系统噪声协方差Q和R未知情况下的状态估计问题。通过一维状态量和观测量的仿真实验,对比了原始数据、标准EKF和自适应EKF的性能表现。结果表明,Sage-Husa方法能够有效自动调整Q和R参数,显著提高滤波精度。实验数据显示,自适应EKF的RMSE和MAE误差指标均优于标准EKF。文中提供了完整的MATLAB源代码,包含主要算法实现和性能评估模块,便于读者直接运行和验证。该方法特别适用于导航定位等需要自适应滤波的领域。原创 2025-09-29 10:03:09 · 283 阅读 · 0 评论 -
【MATLAB代码】CKF(容积卡尔曼滤波)对二维非线性系统的滤波例程,非线性的状态与观测,订阅专栏后可查看完整代码
本文介绍了一个基于CKF(容积卡尔曼滤波)的二维非线性滤波MATLAB程序。该程序针对非线性状态方程和观测方程进行滤波处理,通过状态转移和观测更新实现噪声抑制。结果显示,CKF能有效降低滤波误差,在X轴和Y轴上均优于未滤波状态。源代码包含完整注释,可直接运行生成状态曲线、误差对比和CDF分布图。程序采用固定随机种子保证结果可复现,适用于非线性系统的滤波仿真研究。原创 2025-09-06 10:19:02 · 151 阅读 · 0 评论 -
【MATLAB代码】三维组合导航,滤波使用EKF,带严格的惯导推算(15维状态量、9维观测量)。订阅专栏后可直接查看完整代码
本文实现了一个基于扩展卡尔曼滤波(EKF)的三维组合导航系统,包含15维误差状态模型(位置、速度、姿态、陀螺偏差、加速度计偏差)。通过MATLAB仿真生成了螺旋上升轨迹,对比了纯IMU积分和EKF滤波结果。系统采用严格的惯导推算,每1秒更新一次GNSS观测数据。结果显示EKF能有效抑制IMU累积误差,显著提高导航精度。文章提供了完整MATLAB源代码,可直接运行复现结果,包含三维轨迹、速度/位置/姿态对比曲线及误差分析图。原创 2025-09-01 09:55:18 · 339 阅读 · 0 评论 -
【MATLAB代码】基于EKF的二维组合导航仿真代码,状态量为位置、速度、航向角与IMU偏置,观测量为XY轴的位置和速度,附完整代码
摘要 本文实现了一个基于8维误差状态模型的扩展卡尔曼滤波(EKF)组合导航算法,用于二维运动轨迹估计。系统状态包括位置、速度、航向角、陀螺偏差和加速度计偏差,观测量为GNSS位置和速度。通过仿真圆形运动轨迹,对比了纯IMU积分和EKF算法的性能。结果显示EKF显著提高了定位精度,位置误差均值从纯IMU的3.31m降至0.03m。文中提供了完整的MATLAB源代码,包含状态转移、观测模型和雅可比矩阵计算等核心函数,可直接运行复现实验结果。该算法适用于需要高精度导航的移动平台,如无人机和自动驾驶车辆。原创 2025-08-27 10:01:47 · 240 阅读 · 0 评论 -
【MATLAB代码】严格推导的二维组合导航,模拟UKF(无迹卡尔曼滤波)融合IMU和GNSS,附完整代码
该文章介绍了基于UKF(无迹卡尔曼滤波)的二维IMU/GNSS组合导航系统建模与实现方法。通过MATLAB仿真,展示了真实轨迹、纯IMU积分和UKF估计的对比结果。系统采用15维误差状态模型,包含位置、速度、姿态及传感器偏差,并考虑了IMU噪声和GNSS观测噪声的影响。仿真结果表明,UKF能有效抑制传感器噪声和漂移,相比纯IMU积分显著提高了导航精度。文章提供了完整的MATLAB源代码,可直接运行复现结果。原创 2025-08-29 10:04:59 · 216 阅读 · 0 评论 -
【MATLAB代码】二维状态量的UKF例程,用于非线性滤波,简化版例程,用于普适性的非线性状态估计。附完整代码
本文介绍了一个基于MATLAB的简化版二维状态量无迹卡尔曼滤波(UKF)例程,适用于非线性状态估计问题。该例程包含状态转移和观测模型均为非线性的情况,并提供了详细的中文注释。通过仿真实验,对比了未滤波状态量与UKF滤波后的误差性能,结果显示UKF能有效降低状态估计误差。代码可直接运行并输出各维度状态量曲线、误差曲线及最大误差对比图,便于调试和修改,适用于非线性滤波的普适性研究。原创 2025-08-28 11:03:13 · 130 阅读 · 0 评论 -
【MATLAB代码】联邦卡尔曼滤波,主滤波与子滤波融合GPS、IMU、里程计等多传感器数据,二维。提供完整代码
本文提出了一种基于联邦卡尔曼滤波(FKF)的多传感器融合导航算法,实现了IMU+GNSS和IMU+里程计两个子系统的信息融合。该算法采用标准联邦架构,包含两个子滤波器和一个主滤波器,通过信息加权分配和反馈机制实现高精度状态估计。仿真结果表明,联邦滤波方法在二维轨迹跟踪中显著优于单一传感器方案,位置误差标准差降低至1.5m,较GNSS单独定位精度提升67%。MATLAB源代码可直接运行,完整展示了8字形轨迹下的多传感器融合过程,包括状态预测、量测更新和信息融合等关键步骤,为多源导航系统开发提供了实用参考。原创 2025-08-06 09:22:27 · 508 阅读 · 0 评论 -
【MATLAB代码】三维非线性系统下的CKF(容积卡尔曼滤波)例程,给出滤波前后的对比,使用组合导航为背景。附完整的MATLAB代码
容积卡尔曼滤波三维非线性系统状态估计 本文实现了容积卡尔曼滤波(CKF)在三维非线性系统中的应用。通过MATLAB代码建立了包含非高斯噪声和非线性状态转移的系统模型,展示了CKF算法在状态估计中的性能。结果显示,CKF能有效克服扩展卡尔曼滤波(EKF)需要线性化的局限,通过容积准则逼近非线性函数的概率分布。三维状态曲线图直观展示了真实值、滤波前值和CKF滤波结果的对比,误差曲线和累计密度函数(CDF)图进一步验证了CKF算法的估计精度和收敛性。该实现为处理高维非线性系统的状态估计问题提供了有效解决方案。原创 2025-07-29 09:49:17 · 611 阅读 · 0 评论 -
【MATLAB滤波】1维状态量的自适应的CKF(容积卡尔曼滤波)代码|完整代码,带中文注释
该代码为理解CKF算法提供了简洁的一维实现框架,通过非线性动态与观测模型的设计,展示了其在复杂系统状态估计中的潜力。用户可通过调整噪声参数(`Q`、`R`)和动态模型,快速适配具体工程问题。原创 2025-05-03 11:46:17 · 186 阅读 · 0 评论 -
【MATLAB滤波】维度自适应的CKF(容积卡尔曼滤波)代码|从1维~n维,根据状态量和观测量维度自动调整滤波器结构|完整代码,带中文注释
以下从算法原理、代码结构、功能特性及应用场景展开说明。原创 2025-05-01 09:57:02 · 376 阅读 · 0 评论 -
【MATLAB滤波】维度自适应的UKF代码|从1维~n维,根据状态量和观测量维度自动调整滤波器结构|完整代码,带中文注释
该代码为高维非线性系统的状态估计提供了通用框架,结合无迹卡尔曼滤波的理论优势与工程实现,适用于学术研究及工业应用。通过调整维度参数(如`dim`)和噪声协方差(`Q`、`R`),可快速适配机器人、自动驾驶、信号处理等领域的需求。原创 2025-04-29 10:23:06 · 246 阅读 · 0 评论 -
【MATLAB滤波】维度自适应的EKF代码|从1维~n维,根据状态量和观测量维度自动调整滤波器结构(自动匹配维度)|完整代码,带中文注释
本代码实现了一个,用于多维非线性系统的状态估计。代码通过动态匹配状态量和观测量的维度(支持任意维度),解决了传统EKF实现中维度固定的局限性。其核心功能是通过融合过程模型与非线性观测模型,优化对系统真实状态的估计,有效降低噪声干扰。原创 2025-04-29 10:07:23 · 267 阅读 · 0 评论 -
大误差下,容积卡尔曼滤波(CKF)效果不好的bug记录及解决方案(二)
背景是在雷达定位中,观测误差大,运动轨迹变化大,所以过程噪声的协方差Q不能选太小。然后用EKF和CKF估计目标速度和位置,结果CKF的RMSE远大于EKF,这有点反常,因为通常CKF应该比EKF更准确,尤其是在非线性高的场景下。原创 2025-03-03 14:24:43 · 231 阅读 · 0 评论 -
【逐行注释】自适应R的AEKF(自适应扩展卡尔曼滤波)和经典EKF比较,MATLAB例程|三维非线性系统|订阅专栏后可直接查看完整代码
以下是代码的详细介绍:准备工作:滤波模型初始化:运动模型:扩展卡尔曼滤波 (EKF):自适应扩展卡尔曼滤波 (AEKF):绘图:输出结果:三轴估计值曲线:三轴误差曲线:命令行输出的误差计算:完整源代码如下(复制粘贴到MATLAB空脚本中即可直接运行):备注原创 2024-12-16 08:18:33 · 695 阅读 · 0 评论 -
强跟踪UKF算法,三维非线性状态量和观测量(MATLAB代码,订阅专栏后可直接复制到MATLAB空脚本运行,无需下载)
代码最终输出更新后的状态估计,存储在 中。这些状态估计可以用于进一步分析或控制系统。滤波前后的状态量与真实值的曲线对比:误差曲线对比:误差输出:程序结构如下:完整代码如下:(复制到MATLAB空脚本即可运行)备注原创 2024-12-13 07:31:33 · 419 阅读 · 0 评论 -
UKF与AUKF(Sage Husa)的效果对比(MATLAB代码运行演示与结果分析,三维非线性状态量),附完整源代码,无需下载
本文所述的代码实现了普通无迹卡尔曼滤波(UKF)与自适应无迹卡尔曼滤波(AUKF,Sage Husa方法)在动态系统状态估计中的效果对比。通过对比两种滤波器的性能,评估其在处理带噪声观测数据时的准确性和稳定性。三维非线性状态。原创 2024-12-13 07:28:32 · 403 阅读 · 0 评论 -
一维非线性系统的自适应扩展卡尔曼滤波(自适应EKF),MATLAB代码,自适应Q和R|AEKF与EKF的对比,附完整代码 可复制
初始化清空工作区、命令行和图形窗口,设置随机数种子以确保结果可重复。定义采样率和时间序列,生成系统噪声和观测噪声,并对噪声进行变动处理。生成真实状态和观测数据在循环中,通过迭代生成真实状态值和未滤波的状态值,同时生成观测值,观测值受观测噪声影响。常规EKF通过预测和更新步骤实现常规EKF。预测下一时刻的状态和观测,计算状态转移矩阵和观测矩阵,更新状态协方差和状态估计。自适应EKF (AEKF)在AEKF中,采用一种自适应机制,根据残差动态调整过程噪声和观测噪声的协方差,以提高滤波性能。结果展示。原创 2024-12-09 10:13:35 · 607 阅读 · 0 评论 -
【MATLAB代码】基于扩展卡尔曼滤波(Extended Kalman Filter, EKF)的 SAGE-HUSA 滤波【自适应R】
状态估计:通过EKF和Sage-Husa算法估计非线性系统的状态。噪声模拟:在观测值中添加过程噪声和观测噪声,以模拟真实环境下的系统行为。结果可视化:绘制真实状态、观测值和滤波估计结果,以便进行比较分析。通过本例程,用户可以深入理解基于EKF的Sage-Husa滤波算法的实现过程,以及在非线性系统状态估计中的应用。该代码提供了一种有效的工具,用于分析和比较不同滤波方法在实际应用中的性能。原创 2024-12-04 07:39:14 · 478 阅读 · 0 评论 -
卡尔曼滤波实现一阶马尔可夫形式的滤波|价格滤波|MATLAB代码|无需下载,复制后即可运行【付费专栏试读】
一阶马尔可夫噪声是一种具有马尔可夫性质的随机过程。在这种噪声中,当前时刻的状态只与前一时刻的状态有关,与更早的状态无关。一阶马尔可夫噪声可以用一个状态转移矩阵表示,矩阵的每个元素表示从一个状态转移到另一个状态的概率。原创 2024-11-26 10:05:49 · 721 阅读 · 0 评论 -
正反向滤波的简述和MATLAB代码
这个例程展示了如何在MATLAB中实现卡尔曼滤波的正向滤波和反向滤波(平滑)。通过观察结果,您可以看到正向滤波如何在噪声中估计真实状态,以及反向滤波如何进一步改善估计的准确性。原创 2024-10-29 09:52:53 · 402 阅读 · 0 评论 -
【matlab代码】3个模型的IMM例程(匀速、左转、右转),附源代码(可复制粘贴)
代码概述这段代码实现了基于 IMM(Interacting Multiple Model)算法的目标跟踪。它使用三种不同的运动模型(匀速直线运动、左转弯和右转弯)来预测目标的位置,并通过卡尔曼滤波进行状态估计。初始化部分clc;clear;close all;% 清除命令窗口、工作空间和关闭所有图形窗口rng(0);% 设置随机数生成器的默认状态,以确保可重复性这部分代码清理 MATLAB 环境并设置随机数种子,确保每次运行程序的结果一致。仿真参数设置% 仿真迭代次数T = 1;原创 2024-10-25 15:40:32 · 849 阅读 · 0 评论 -
无迹粒子滤波(Unscented Particle Filter)的定义与讲解
无迹粒子滤波通过结合无迹变换与粒子滤波的优势,能够有效处理非线性和非高斯状态估计问题。通过上述公式,我们可以更清晰地理解无迹粒子滤波的工作原理及其数学基础。原创 2024-10-22 10:02:19 · 511 阅读 · 0 评论 -
【MATLAB】无迹粒子滤波(Unscented Particle Filter)例程
本代码通过实现无迹粒子滤波,展示了如何在一维状态空间中估计动态系统的状态。通过模拟真实状态和噪声,用户可以观察到滤波器在位置和速度估计上的效果,并通过可视化手段深入理解无迹粒子滤波的工作原理和性能。原创 2024-10-21 09:52:31 · 514 阅读 · 0 评论 -
【MATLAB代码】二维情况下的EKF滤波,非线性状态方程和非线性的观测方程
本程序实现了扩展卡尔曼滤波(EKFEKFEKF)在二维状态估计中的应用,用于处理带有噪声的动态系统。通过对真实状态和观测数据的建模,程序能够有效地估计系统状态,减少噪声对结果的影响。以下是代码的主要功能和结构的详细介绍。本程序展示了如何实现扩展卡尔曼滤波算法进行二维状态估计,并通过仿真实验验证了其有效性。通过对不同状态的估计和误差分析,本代码为学习和应用EKF提供了良好的基础。原创 2024-10-17 11:21:08 · 860 阅读 · 0 评论 -
【逐行注释】MATLAB下的粒子滤波代码(三维状态与观测,可直接复制粘贴到MATLAB上面运行)
粒子滤波(Particle Filter, PF)是一种基于贝叶斯理论的递归估计方法,广泛用于动态系统状态的估计和跟踪。该方法通过一组粒子(即假设的状态)及其权重来表示系统的概率分布,并通过预测、更新和重采样步骤逐渐逼近真实状态。原创 2024-10-01 16:17:01 · 775 阅读 · 0 评论 -
【逐行注释】扩展卡尔曼滤波EKF和粒子滤波PF的效果对比,MATLAB源代码(无需下载,可直接复制)
绘制真实状态与估计状态的对比图、估计误差图及误差的CDF(累积分布函数)图,方便分析不同滤波方法的性能。:初始化仿真参数,如粒子数量、时间序列、状态转移与观测噪声的协方差矩阵。:在每个时间步中,将粒子进行预测、加权、归一化和重采样,得到状态估计。:在命令行输出未滤波、EKF和PF的最大误差值,提供对比依据。:通过定义状态转移方程,生成系统的真实状态和带噪声的观测值。:随机生成粒子并计算初始权重,为粒子滤波的后续步骤做准备。:通过预测、更新步骤,利用测量数据不断修正状态估计。)在状态估计中的对比分析。原创 2024-09-23 20:39:54 · 671 阅读 · 0 评论 -
MATLAB卡尔曼|扩展卡尔曼滤波EKF【非线性】的五个公式
卡尔曼滤波(Kalman Filter)一种用于估计系统状态的数学算法,类似于高通、低通滤波器那样的频域滤波。卡尔曼滤波基于线性动态系统的假设,它将系统的状态表示为均值和协方差矩阵,通过递归地更新和预测这些值来实现对系统状态的估计。卡尔曼滤波有两个主要的步骤:预测和更新。卡尔曼滤波具有一些优点,例如对噪声和不确定性的鲁棒性较强,能够提供较为精确的估计结果,并且计算效率较高。原创 2024-09-16 13:39:47 · 1294 阅读 · 0 评论 -
【逐行注释】自适应Q和R的AUKF(自适应无迹卡尔曼滤波)|MATLAB代码|无需下载,可直接复制到MATLAB上面运行
自适应无迹卡尔曼滤波在无迹卡尔曼滤波的基础上,引入了自适应的思想。具体来说,它使用一种自适应的方法来根据系统的动态特性进行无迹点的选择和更新,从而提高系统的估计精度。它通过动态地调整无迹点的数量和分布,能够更好地适应系统的动态特性,提高估计精度,同时具有较低的计算复杂度。自适应调节Q和R的UKF与传统UKF效果对比: 比较自适应Unscented Kalman Filter (AUKF) 和传统Unscented Kalman Filter (UKF) 的效果。原创 2024-09-13 13:22:23 · 658 阅读 · 0 评论 -
【逐行注释】自适应观测协方差矩阵(R)的AUKF(自适应无迹卡尔曼滤波)|MATLAB代码|无需下载,可直接复制到MATLAB上面运行
自适应无迹卡尔曼滤波在无迹卡尔曼滤波的基础上,引入了自适应的思想。它通过动态地调整无迹点的数量和分布,以适应系统的动态变化。具体来说,它使用一种自适应的方法来根据系统的动态特性进行无迹点的选择和更新,从而提高系统的估计精度。自适应无迹卡尔曼滤波适用于非线性和非高斯的系统状态估计问题,可以广泛应用于机器人导航、目标跟踪、航天器导航等领域。它通过动态地调整无迹点的数量和分布,能够更好地适应系统的动态特性,提高估计精度,同时具有较低的计算复杂度。用迭代的方法计算真值和滤波前的值。经典的无迹卡尔曼滤波。原创 2024-09-10 20:11:42 · 742 阅读 · 0 评论 -
MATLAB代码|中心差分卡尔曼滤波(CDKF)的滤波例程,无需下载,直接复制到MATLAB上面就能运行
中心差分卡尔曼滤波(Central Difference Kalman Filter,CDKF)是一种在非线性系统中估计状态的滤波器。它是卡尔曼滤波器的一种变体,通过将非线性系统模型线性化来处理非线性问题。与传统的卡尔曼滤波器不同,CDKF使用中心差分法来估计系统的状态。中心差分是一种数值计算方法,在计算微分的同时提供更高的精度。对于非线性系统,中心差分法可以更准确地估计状态的变化。CDKF的工作原理如下:首先,使用非线性系统模型和当前的状态估计来预测系统的状态。原创 2024-09-03 13:27:06 · 724 阅读 · 0 评论 -
MATLAB下的粒子滤波例程|三维非线性模型|组合导航|PF代码(无需下载,直接复制到MATLAB上即可运行)
模拟INS、GPS组合导航的应用背景。在模型预处理的时候通过迭代计算三维位置的真值和滤波前(模拟纯INS计算)的值。通过PF(粒子滤波,particlefilterparticlefilter),对位置进行滤波,并输出滤波后的值,进行对比。PF(粒子滤波)是一种用于估计非线性和非高斯系统状态的概率滤波方法。它利用随机抽样的粒子来表示系统的状态空间,并通过重要性采样和重采样步骤来更新粒子的权重。原创 2024-09-02 13:31:24 · 689 阅读 · 0 评论 -
【逐行注释】容积卡尔曼滤波的MATLAB例程(三维CKF),无需下载,可直接复制代码到MATLAB上运行
程序自带运动模型,运行程序即自动完成运动模型建立、滤波、滤波结果输出、滤波误差计算与输出等。,相比于UKF(无迹卡尔曼滤波),拥有更合理的理论推导和鲁棒性,且在理论上比UKF的精度更高。如需联系作者,可私信或通过下方了解⬇️。三维状态的真值与滤波后的值。原创 2024-09-01 14:23:27 · 514 阅读 · 0 评论 -
【逐行注释】MATLAB下的UKF(无迹卡尔曼滤波),带丰富的中文注释,可直接复制到MATLAB上运行,无需下载
上面这一段是误差统计特性的计算与输出。fprintf用于输出后面引号内的内容和变量的内容。其中subplot是生成子图,可以在一个图像窗口上分割成多个区域,每个区域绘图互不影响。X是真实值,X_是未滤波的值,Z是观测值。第一幅图为各个维度的。原创 2024-08-29 20:23:21 · 641 阅读 · 0 评论 -
【逐行注释】一维EKF滤波的MATLAB代码|*不需要下载*,直接复制到MATLAB即可运行
这是一个状态量为一维的MATLAB下的滤波程序,使用的滤波方法是EKF(扩展卡尔曼滤波),滤波后,显示滤波值的曲线、滤波误差曲线、滤波误差的最大值、平均值、标准差的输出。模型是非线性的(状态方程和观测方程都是非线性的),我将模型设计得尽可能复杂一些,拿到手以后可以从难往简单的方向改,更容易上手。原创 2024-08-28 11:16:41 · 184 阅读 · 1 评论 -
【逐行注释】MATLAB下的EKF和UKF例程详解|无需下载,复制到MATLAB窗口即可运行
这是一个状态量为三维的MATLAB下的滤波程序,分成EKF(扩展卡尔曼滤波)和UKF(无迹卡尔曼滤波)两种,分别滤波后,显示滤波值的曲线、滤波误差的对比曲线、滤波误差的最大值、平均值、标准差的输出。模型是非线性的(状态方程和观测方程都是非线性的),我将模型设计得尽可能复杂一些,拿到手以后可以从难往简单的方向改,更容易上手。原创 2024-08-26 16:36:52 · 608 阅读 · 0 评论 -
【逐行注释】基于CV/CT模型的IMM|MATLAB程序|源代码复制后即可运行,无需下载,订阅专栏后可直接复制粘贴
基于EKF的多模型交互。以CV和CT两个模型进行交互,这里对代码进行逐行注释。注释较多,个人理解的时候如果有误,欢迎指正。我尽量将模型设计复杂一点,便于拿到手以后改成自己想要的形式。原创 2024-08-25 16:20:28 · 373 阅读 · 0 评论 -
【逐行注释】三维EKF的MATLAB代码|源代码直接呈现,无需下载
基于MATLAB的EKF(扩展卡尔曼滤波)代码解析。状态转移和观测都是非线性的,也就是说会涉及到雅克比矩阵的求解。我尽量将模型设计复杂一点,便于拿到手以后改成自己想要的形式。原创 2024-08-25 15:55:02 · 765 阅读 · 0 评论 -
7次多项式对若干个点进行拟合,并生成图像|MATLAB实现
总之,MATLAB对数据进行拟合可以帮助我们理解数据的规律和趋势,预测未来的走向,修正和优化数据,以及验证模型的准确性和可靠性。这对于科学研究、工程设计和经济决策等领域都具有重要的意义。MATLAB对数据进行拟合的意义是通过数学模型和统计方法对实际数据进行分析和预测。拟合可以帮助我们理解数据背后的规律和趋势,从而做出科学决策。原创 2024-08-16 10:20:46 · 425 阅读 · 0 评论
分享