三角函数の自由组合定律


三角函数の自由组合定律

在这里插入图片描述

雄配子 ( sin ⁡ α : cos ⁡ α : sin ⁡ β : cos ⁡ β = 1 : 1 : 1 : 1 ) 雌配子 ( sin ⁡ α : cos ⁡ α : sin ⁡ β : cos ⁡ β = 1 : 1 : 1 : 1 ) 基因型 ( sin ⁡ ( α + β ) : cos ⁡ ( α + β ) : sin ⁡ ( α − β ) : cos ⁡ ( α − β ) = 1 : 1 : 1 : 1 ) 雄配子(\sin\alpha:\cos\alpha:\sin\beta:\cos\beta=1:1:1:1)\\雌配子(\sin\alpha:\cos\alpha:\sin\beta:\cos\beta=1:1:1:1)\\基因型(\sin(\alpha+\beta):\cos(\alpha+\beta):\sin(\alpha-\beta):\cos(\alpha-\beta)=1:1:1:1) 雄配子(sinα:cosα:sinβ:cosβ=1:1:1:1)雌配子(sinα:cosα:sinβ:cosβ=1:1:1:1)基因型(sin(α+β):cos(α+β):sin(αβ):cos(αβ)=1:1:1:1) 实验结果与结论 : sin ⁡ ( α + β ) 、 cos ⁡ ( α + β ) 是杂合子 在形成配子时,成对的遗传因子彼此分离。不成对的遗传因子自由组合。 sin ⁡ ( α + β ) 、 cos ⁡ ( α + β ) 产生 4 种类型的配子且比例相等 实验结果与结论:\\\sin(\alpha+\beta)、\cos(\alpha+\beta)是杂合子 \\在形成配子时,成对的遗传因子彼此分离。不成对的遗传因子自由组合。\\\sin(\alpha+\beta)、\cos(\alpha+\beta)产生4种类型的配子且比例相等 实验结果与结论:sin(α+β)cos(α+β)是杂合子在形成配子时,成对的遗传因子彼此分离。不成对的遗传因子自由组合。sin(α+β)cos(α+β)产生4种类型的配子且比例相等 sin ⁡ ( α + β ) : cos ⁡ ( α + β ) : sin ⁡ ( α − β ) : cos ⁡ ( α − β ) = 1 : 1 : 1 : 1 \sin(\alpha+\beta):\cos(\alpha+\beta):\sin(\alpha-\beta):\cos(\alpha-\beta)=1:1:1:1\\ sin(α+β):cos(α+β):sin(αβ):cos(αβ)=1:1:1:1

### 六节点三角形单元的有限元分析 #### 定义六节点三角形单元 六节点三角形单元是一种二次插值单元,适用于更精确地模拟复杂形状和应力分布。该单元有三个顶点节点和三个边中点节点,每个节点有两个自由度(u, v),因此总共有12个自由度。 #### 描述位移场 为了描述六节点三角形单元内的位移场,采用二次多项式来表示位移函数: \[ u(x,y) = a_0 + a_1x + a_2y + a_3xy + a_4x^2 + a_5y^2 \] \[ v(x,y) = b_0 + b_1x + b_2y + b_3xy + b_4x^2 + b_5y^2 \] 其中 \(a_i\) 和 \(b_i (i=0,...,5)\) 是待定系数,可以通过节点坐标和节点位移求得[^1]。 #### 形状函数构建 利用上述位移表达式可以得到六个节点对应的位置矢量,并由此建立形状函数矩阵N。形状函数用于将全局坐标的物理量转换成局部坐标的物理量,在此过程中起到桥梁作用。对于六节点三角形而言,其形状函数通常写为如下形式: \[ N = \begin{pmatrix} N_1 & 0 \\ 0 & N_1\\ ...& ...\\ N_6 & 0\\ 0 & N_6 \end{pmatrix} \] 这里\(N_i(i=1,\ldots ,6)\)代表第i个节点对应的线性组合项,具体数值取决于所选基底及其权重因子。 #### 刚度矩阵计算 基于虚功原理或最小势能原理,可获得单元刚度矩阵K。它反映了结构内部各部分之间的相互约束关系。对于二维弹性力学问题来说,刚度矩阵可通过积分运算得出: \[ [K]=\int_{V}B^{T}DBdV \] 此处D为材料性质构成的弹性矩阵;而B则由偏导数组成的应变-位移变换矩阵给出。针对平面应力和平面应变两种情况,分别有不同的D矩阵形式[^4]。 #### 应力计算 一旦获得了整体系统的平衡方程并解决了未知结点位移,则可以根据已知条件进一步求解各个位置处的具体应力分量σ_x、σ_y及τ_xy。这一步骤同样依赖于之前提到过的应变-位移关系以及广义虎克定律完成转化过程。 ```matlab % MATLAB代码片段展示如何实现以上理论框架的一部分功能 function K = computeStiffnessMatrix(coords, E, nu) % coords: 节点坐标 [x1 y1; x2 y2; ... ; x6 y6] % E: 杨氏模量 % nu: 泊松比 D = planeStrainElasticityMatrix(E, nu); % 获取弹性矩阵 B = strainDisplacementMatrix(coords); % 构建应变-位移矩阵 detJ = determinantOfJacobian(coords); K = zeros(12, 12); for i = 1:size(B, 1) K = K + B(i,:)' * D * B(i,:) * abs(detJ)/6; end end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值