第十一章 动量矩定理
11-1 质点和质点系的动量矩
(1)质点的动量矩
质点对点的动量矩为矢量,质点对轴的动量矩为标量(代数量)
(2)质点系绕定轴转动的动量矩
J
z
J_z
Jz为质点系绕z轴(固定轴)的转动惯量,类似于直线运动中的质量m,其求解方法为:
J
z
=
∑
m
i
r
i
2
\begin{align} J_z=\sum m_i r_i^2 \end{align}
Jz=∑miri2
其中
m
i
m_i
mi为质点系中每个质点的质量,
r
i
r_i
ri为每个质点到o点的距离。
则质点系绕z轴转动的动量矩为:
L z = J z ω \begin{align} L_z=J_z \omega \end{align} Lz=Jzω
(3)质点系绕矢量转动的动量矩
设有一质点系,该质点系中所有质点都可以看作是绕单位矢量
n
⃗
\vec{n}
n 以相同的角速度
ω
\omega
ω 进行旋转的。且质点系对矢量
n
⃗
\vec{n}
n 所对应的轴的转动惯量为
J
n
J_n
Jn 。则质点系对矢量
n
⃗
\vec{n}
n 的动量矩为:
L
n
⃗
=
n
⃗
⋅
J
n
ω
=
J
n
ω
⃗
\begin{equation} \begin{aligned} \vec{L_n}=& \vec{n} \cdot J_n \omega \\ =& J_n \vec{\omega} \end{aligned} \end{equation}
Ln==n⋅JnωJnω
11-4 刚体对轴的转动惯量
计算公式参考P288~P289