《理论力学》动量矩定理

第十一章 动量矩定理

11-1 质点和质点系的动量矩

(1)质点的动量矩
质点对点的动量矩为矢量,质点对轴的动量矩为标量(代数量)

(2)质点系绕定轴转动的动量矩

   J z J_z Jz为质点系绕z轴(固定轴)的转动惯量,类似于直线运动中的质量m,其求解方法为:
J z = ∑ m i r i 2 \begin{align} J_z=\sum m_i r_i^2 \end{align} Jz=miri2
其中 m i m_i mi为质点系中每个质点的质量, r i r_i ri为每个质点到o点的距离。

则质点系绕z轴转动的动量矩为:

L z = J z ω \begin{align} L_z=J_z \omega \end{align} Lz=Jzω

(3)质点系绕矢量转动的动量矩

  设有一质点系,该质点系中所有质点都可以看作是绕单位矢量 n ⃗ \vec{n} n 以相同的角速度 ω \omega ω 进行旋转的。且质点系对矢量 n ⃗ \vec{n} n 所对应的轴的转动惯量为 J n J_n Jn 。则质点系对矢量 n ⃗ \vec{n} n 的动量矩为:
L n ⃗ = n ⃗ ⋅ J n ω = J n ω ⃗ \begin{equation} \begin{aligned} \vec{L_n}=& \vec{n} \cdot J_n \omega \\ =& J_n \vec{\omega} \end{aligned} \end{equation} Ln ==n JnωJnω

11-4 刚体对轴的转动惯量

计算公式参考P288~P289

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值