刷题_28:反转部分单向链表 and 猴子分桃

文章提供了两个编程问题的解决方案,一是如何反转单向链表的某一部分,二是解决猴子分桃的数学问题。对于链表反转,通过定义节点,构建链表,找到反转区间并断开链接,然后反转指定部分,最后重新连接。猴子分桃问题则是一个关于分数乘法和递归的数学问题,通过计算确定初始桃子数量和老猴子最后能获得的桃子数。
摘要由CSDN通过智能技术生成

一.反转部分单向链表

题目链接:

反转部分单向链表

题目描述:

给定一个单链表,在链表中把第 L 个节点到第 R 个节点这一部分进行反转。

输入描述:

n 表示单链表的长度。
val 表示单链表各个节点的值。
L 表示翻转区间的左端点。
R 表示翻转区间的右端点。

输出描述:

在给定的函数中返回指定链表的头指针。

示例1:

输入:
5
1 2 3 4 5
1 3
输出:
3 2 1 4 5

示例2:

输入:
0,0
输出:
0

个人总结:

定义一个单链表节点,然后构造单链表,再根据输入的l找到左端点和其前驱节点,根据r找到右端点和其后继节点,接着断开链表,翻转链表,最后在重新连接链表,按照顺序输出即可。

代码实现:

import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        //构造单链表
        int n = sc.nextInt();
        Node dummyHead = new Node(-1);
        Node tail = dummyHead;
        for (int i = 0; i < n; i++) {
            int val = sc.nextInt();
            tail.next = new Node(val);
            tail = tail.next;
        }
        int l = sc.nextInt();
        int r = sc.nextInt();
        //找到第l个节点和他的前驱节点
        Node pre = null;
        Node ln = dummyHead;
        while (l-- != 0) {
            pre = ln;
            ln = ln.next;
        }
        //找到第r个节点和他的后继节点
        Node rn = dummyHead;
        Node next = rn.next;
        while (r-- != 0) {
            rn = rn.next;
            next = rn.next;
        }
        //断开
        pre.next = null;
        rn.next = null;
        //逆置部分
        reverse(ln);
        //在链接上
        //逆置之后 rn为头 ln为尾
        pre.next = rn;
        ln.next = next;
        //打印
        Node tmp = dummyHead.next;
        while (tmp != null) {
            System.out.print(tmp.val + " ");
            tmp = tmp.next;
        }
    }

    public static Node reverse(Node head) {
        Node pre = null;
        Node next = null;
        while (head != null) {
            next = head.next;
            head.next = pre;
            pre = head;
            head = next;
        }
        return pre;
    }

    static class Node {
        int val;
        Node next;

        public Node() {

        }

        public Node(int val) {
            this.val = val;
        }
    }
}

二.猴子分桃

题目链接:

猴子分桃

题目描述:

老猴子辛苦了一辈子,给那群小猴子们留下了一笔巨大的财富——一大堆桃子。老猴子决定把这些桃子分给小猴子。
第一个猴子来了,它把桃子分成五堆,五堆一样多,但还多出一个。它把剩下的一个留给老猴子,自己拿走其中的一堆。
第二个猴子来了,它把桃子分成五堆,五堆一样多,但又多出一个。它把多出的一个留给老猴子,自己拿走其中的一堆。
后来的小猴子都如此照办。最后剩下的桃子全部留给老猴子。
这里有n只小猴子,请你写个程序计算一下在开始时至少有多少个桃子,以及最后老猴子最少能得到几个桃子。

输入描述:

输入包括多组测试数据。
每组测试数据包括一个整数n(1≤n≤20)。
输入以0结束,该行不做处理。

输出描述:

每组测试数据对应一行输出。
包括两个整数a,b。
分别代表开始时最小需要的桃子数,和结束后老猴子最少能得到的桃子数。

示例1:

输入:
5
1
0
输出:
3121 1025
1 1

他人思路:

纯数学题,思路与前面人的思路不太一样,不用借桃子,直接根据题意来进行求解,设最少需要桃子X个:
第一次经过题目的处理剩余桃子数目为:4/5(X-1)=(4/5)X-(4/5);
第二次剩余桃子个数为:4/5(4/5(X-1)-1)=((4/5)2)*X-(4/5)2-(4/5);
第三次剩余桃子个数为:4/5(4/5(4/5(X-1)-1)-1)=((4/5)3)*X-(4/5)3-(4/5)^2-(4/5);

依次类推,经过n只猴子的类似处理,剩余桃子数为:
4/5(4/5(4/5(…(4/5(X-1)…)-1)-1)-1)=((4/5)n)*X)-(4/5)n-(4/5)^(n-1)-…-(4/5)
=((4/5)n)*X)-4[1-(4/5)n]
=(X+4)
(4/5)^n-4
因此,同前人的推导一致,最终,只需要满足x+4的值为5^n次方则可以保证最后能得到一个整数,满足题目的要求。

代码实现:

import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        while (sc.hasNext()) {
            int n = sc.nextInt();
            if (n != 0) {
                System.out.print((long) Math.pow(5, n) - 4 + " ");
                System.out.print((long) Math.pow(4, n) - 4 + n);
            }
            System.out.println();
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木木是木木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值