tensorflow报错总结

项目场景:

tensorflow 版本 不兼容产生的报错


问题描述:

1.AttributeError: module ‘tensorflow’ has no attribute ‘random_uniform’

解决办法:tf2.0中用tf.random.uniform代替了random_uniform

2.RuntimeError: loss passed to Optimizer.compute_gradients should be a funct

报错行:

train = tf.train.GradientDescentOptimizer(0.01).minimize(cost)

解决办法:函数改为 train = tf.compat.v1.train.GradientDescentOptimizer(0.01).minimize(cost)

官方文档:
tensorflow文档

3.AttributeError: module ‘tensorflow’ has no attribute ‘Session’

报错行

 with tf.Session() as sess:

解决办法:在新的Tensorflow 版本中已经移除了Session这一模块,改换运行代码

tf.compat.v1.Session()

4.RuntimeError: The Session graph is empty. Add operations to the graph before calling run().

该流图为空,但是在tensorflow2.0之后已经不再需要用到tf.Session了
在tf2.0中,所有运算仅以张量形式进行,但可以在运算结束时将其变为数组形式,所以将张量改为numpy形式

import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  # 去警告

def tensorflowdemo():
    a = tf.constant(12)
    b = tf.constant(78)
    c = a + b
    print("c = ", c)
    print("cval= ", c.numpy())

5.ValueError: Dimension 0 in both shapes must be equal, but are 10 and 3. Shapes are [10,?] and [3,10].

解决办法:值错误:两种形状的维度必须相等,不可以顺便改形状

6.AttributeError: module ‘tensorflow’ has no attribute ‘placeholder’

报错行:

c = tf.placeholder(dtype=tf.float32, shape=[3, 2])

解决办法:tensorflow版本不兼容问题,所以更改导入模块方式,就可以在tensorflow2下使用tensorflow1的方法

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Super.Bear

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值