Pytorch之LeNet-5图像分类

  • 💂 个人主页:风间琉璃
  • 🤟 版权: 本文由【风间琉璃】原创、在CSDN首发、需要转载请联系博主
  • 💬 如果文章对你有帮助、欢迎关注、点赞、收藏(一键三连)订阅专栏

目录

前言 

一、LeNet-5

二、LeNet-5网络实现

1.定义LeNet-5模型

2.加载数据集

3.训练模型

4.测试模型

三、实现图像分类


前言 

 LeNet-5是一个经典的深度卷积神经网络,由Yann LeCun在1998年提出,旨在解决手写数字识别问题,被认为是卷积神经网络的开创性工作之一。该网络是第一个被广泛应用于数字图像识别的神经网络之一,也是深度学习领域的里程碑之一。

一、LeNet-5

下图是 LeNet-5 的网络结构图,它 接受32×32大小的数字、字符图片,经过第一个卷积层得到[b,6, 28,28]形状的张量,经过一个向下采样层,张量尺寸缩小到[b,6,14,14],经过第二个卷积层,得到[b,16,10,10]形状的张量,同样经过下采样层,张量尺寸缩小到[b,16, 5,5],在进入全连接层之前,先将张量 打成[b,16*5*5 ]的张量,送入输出节点数分别为 120、84 的 2 个全连接层,得到[b,84]的张量,最后通过Gaussian connections层,最终输出[b,10]

LeNet-5的基本结构包括7层网络结构(不含输入层),其中包括2个卷积层、2个降采样层(池化层)、2个全连接层和输出层。LeNet-5 网络层数较少(2 个卷积层和 2 个全连接层),参数量较少,计算代价较低,尤其在现代GPU的加持下,数分钟即可训练好 LeNet-5 网络。 

这里网络结构只给了进行卷积核池化前后的特征图的大小,那么如果确定卷积核的尺寸和通道数呢?

1.输入特征层的channel与卷积核的channel相同

2.输出特征层的channel与卷积核个数相同

经过卷积后的矩阵尺寸大小计算公式为:

N = (W - F + 2P) /  S  +1

①输入图片大小WxW

②卷积核Filter大小FxF

③步长S

④panding填充值P

比如输入层接收大小为 32×32 的手写数字图像,卷积层C1包括6个卷积核,每个卷积核的大小为 5×5 ,步长为1,填充为0。因此,每个卷积核会产生一个大小为 28×28 的特征图(输出通道数为6)。

N(28) = (32-5+0)/1 + 1 =27 + 1 = 28

采样层S2采用最大池化(max-pooling)操作,每个窗口的大小为 2×2 ,步长为2。因此,每个池化操作会从4个相邻的特征图中选择最大值,产生一个大小为 14×14 的特征图(输出通道数为6)。这样可以减少特征图的大小,提高计算效率,并且对于轻微的位置变化可以保持一定的不变性。其他的网络层也是一样的,可以相互推算。

二、LeNet-5网络实现

1.定义LeNet-5模型

根据上面网络模型使用Pytorch实现LeNet-5网络模型的搭建

import torch.nn as nn
import torch.nn.functional as F


class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5)
        self.pool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.pool2 = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))     # input(3, 32, 32) output(6, 28, 28)
        x = self.pool1(x)             # output(6, 14, 14)
        x = F.relu(self.conv2(x))     # output(16, 10, 10)
        x = self.pool2(x)             # output(16, 5, 5)
        x = x.view(-1, 16*5*5)        # output(16*5*5)
        x = F.relu(self.fc1(x))       # output(120)
        x = F.relu(self.fc2(x))       # output(84)
        x = self.fc3(x)                # output(10)
        return x

if __name__ == '__main__':
    net = LeNet()
    print(net)

2.加载数据集

使用CIFAR10数据集,加载数据集后还需要对数据集进行预处理,如图像格式转换(Tensor)、归一化、标准化等处理。然后使用DataLoader分批次加载数据集,用于训练和测试。

# 预处理
    transform = transforms.Compose(
        [transforms.ToTensor(),  # 将图像转化为tensor,并做归一化:[0,1] 数据类型转换 + 标准化
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 输入数据的数值范围标准化为特定的均值和标准差
         ]
    )

    # 加载训练集
    train_set = torchvision.datasets.CIFAR10(root='./data', train=True, transform=transform, download=True)
    train_loader = torch.utils.data.DataLoader(train_set, batch_size=36, shuffle=True, num_workers=0)
    # 加载测试集
    val_set = torchvision.datasets.CIFAR10(root='./data', train=False, transform=transform, download=True)
    val_loader = torch.utils.data.DataLoader(val_set, batch_size=5000, num_workers=0)

    # 使用next函数从val_data_iter迭代器中获取下一个批次的数据
    val_data_iter = iter(val_loader)
    val_image, val_label = next(val_data_iter)

3.训练模型

实例化网络模型,并进行网络模型的训练。

    net = LeNet()
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=0.001)

    for epoch in range(10):  # 训练次数
        # 每次训练的损失值
        running_loss = 0.0
        # 获取批次的索引 step 和数据 data
        for step, data in enumerate(train_loader, start=0):
            # 获取images,labels; data是一个列表[images, labels]
            images, labels = data

            # 将优化器的梯度缓冲区清零
            optimizer.zero_grad()
            # forward + backward + optimize
            # 前向传播,得到模型的输出
            outputs = net(images)
            # 计算模型的输出和真实标签 labels 之间的损失(误差)
            loss = loss_function(outputs, labels)
            # 通过反向传播算法计算损失对模型参数的梯度
            loss.backward()
            # 根据梯度更新模型参数,这是优化器的一次参数更新步骤
            optimizer.step()

4.测试模型

在每训练到500次时,进行一次测试。

            # 测试
            running_loss += loss.item()
            if step % 500 == 499:
                # 关闭梯度计算。因为在验证或测试时不需要计算梯度,所以可以提高运行效率
                with torch.no_grad():
                    outputs = net(val_image)  # [batch, 10]
                    # 选择输出中概率最高的类别作为预测结果,并且是在第一个维度[batch,10]
                    # max 返回找到最大的值以及该值所在的位置(索引),是一个元组(val ,index)
                    predict_y = torch.max(outputs, dim=1)[1]
                    accuracy = torch.eq(predict_y, val_label).sum().item() / val_label.size(0)

                    print('[%d, %5d] train_loss: %.3f  test_accuracy: %.3f' %
                          (epoch + 1, step + 1, running_loss / 500, accuracy))
                    running_loss = 0.0

在网络训练完成后,记得保存网络模型,用于后续的部署和使用。

save_path = './Lenet.pth'
torch.save(net.state_dict(), save_path)

三、实现图像分类

将上面保存的模型用来测试其他图片,检验模型训练的效果。

import torch
import torchvision.transforms as transforms
from PIL import Image, ImageDraw
from model import LeNet

def main():
    # 图片预处理
    transform = transforms.Compose(
        [transforms.Resize((32, 32)),
         transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    # 分类标签
    classes = ('plane', 'car', 'bird', 'cat',
               'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

    # s实例化网络
    net = LeNet()
    # 加载网络模型
    net.load_state_dict(torch.load('Lenet.pth'))

    img = Image.open('dog.jpg')
    # [H, W, C] --> [C, H, W]
    image = transform(img)
    # 增加维度:[N, C, H, W],使满足网络的输入维度要求
    image = torch.unsqueeze(image, dim=0)

    with torch.no_grad():
        # 得到预测结果
        outputs = net(image)
        # 得到分类标签
        predict = torch.max(outputs, dim=1)[1].numpy()
    print(classes[int(predict)])
    draw = ImageDraw.Draw(img)
    text = classes[int(predict)]
    # 文本的左上角位置
    position = (10, 10)
    # fill 指定文本颜色
    draw.text(position, text, fill='red')
    img.show()

if __name__ == '__main__':
    main()

预测结果:

结束语
感谢你观看我的文章呐~本次航班到这里就结束啦 🛬

希望本篇文章有对你带来帮助 🎉,有学习到一点知识~

躲起来的星星🍥也在努力发光,你也要努力加油(让我们一起努力叭)。

最后,博主要一下你们的三连呀(点赞、评论、收藏),不要钱的还是可以搞一搞的嘛~

不知道评论啥的,即使扣个666也是对博主的鼓舞吖 💞 感谢 💐

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
本教程将介绍如何使用PyTorch实现LeNet图像分类算法。LeNet是一个经典的卷积神经网络,最初用于手写数字识别。它是深度学习领域的重要里程碑之一,为后来的卷积神经网络打下了基础。 在本教程中,我们将使用PyTorch实现LeNet来对Fashion-MNIST数据集进行图像分类。Fashion-MNIST是一个包含10个类别的衣服图像数据集,每个类别有6000个训练样本和1000个测试样本。我们将使用LeNet对每个图像进行分类。 首先,我们需要导入所需的库。 ``` python import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms ``` 接下来,我们将定义一些超参数,如批量大小、学习率和训练周期数。 ``` python # Hyper-parameters batch_size = 100 learning_rate = 0.001 num_epochs = 10 ``` 然后,我们需要加载Fashion-MNIST数据集。我们将对数据进行归一化和数据增强,以提高模型的性能。 ``` python # Fashion-MNIST dataset train_dataset = torchvision.datasets.FashionMNIST(root='./data', train=True, transform=transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(28, padding=4), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]), download=True) test_dataset = torchvision.datasets.FashionMNIST(root='./data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ])) # Data loader train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) ``` 接下来,我们将定义LeNet模型。LeNet包含两个卷积层和三个全连接层。我们将使用ReLU作为激活函数,并在每个卷积层之间添加最大池化层。 ``` python # LeNet-5 class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=2) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(16*5*5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) self.relu = nn.ReLU() def forward(self, x): out = self.conv1(x) out = self.relu(out) out = self.pool1(out) out = self.conv2(out) out = self.relu(out) out = self.pool2(out) out = out.view(out.size(0), -1) out = self.fc1(out) out = self.relu(out) out = self.fc2(out) out = self.relu(out) out = self.fc3(out) return out model = LeNet() ``` 接下来,我们将定义损失函数和优化器。 ``` python # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) ``` 最后,我们将训练和测试模型。 ``` python # Train the model total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # Forward pass outputs = model(images) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) # Test the model with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the model on the test images: {} %'.format(100 * correct / total)) ``` 这就是如何使用PyTorch实现LeNet图像分类算法。在本教程中,我们使用LeNet对Fashion-MNIST数据集进行了分类。您可以使用相同的方法来实现其他图像分类任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Super.Bear

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值