给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标。
示例 1:
输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。
示例 2:
输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。
力扣的官方题解真不错:
我们依次遍历数组中的每一个位置,并实时维护最远可以到达的位置。对于当前遍历到的位置x,如果它在最远可以到达的位置的范围内,那么我们就可以从起点通过若干次跳跃到达该位置,因此我们可以用x+nums[x]更新最远可以到达的位置。
在遍历的过程中,如果最远可以到达的位置大于等于数组中的最后一个位置,那就说明最后一个位置可达,我们就可以返回True。反之,如果在遍历结束后,最后一个 位置仍然不可达,我们就返回False作为答案。
class Solution {
public boolean canJump(int[] nums) {
int rightmost = 0;
for(int i = 0; i < nums.length; i++) {
if(i <= rightmost) {
rightmost = Math.max(rightmost, i + nums[i]);
if(rightmost >= nums.length - 1) {
return true;
}
}
}
return false;
}
}