假设你有一个图像,并且你想在这个图像上进行面部检测。面部可能以不同的大小存在于图像中,因此我们需要以不同的尺度来查找面部。这就是scaleFactor
发挥作用的地方。
图像尺度金字塔
为了在多个尺度上检测面部,算法首先创建一个所谓的“图像尺度金字塔”。这个金字塔是一系列的图像,每个后续的图像都是前一个图像的缩小版。缩小的比例就是由scaleFactor
决定的。比如,如果scaleFactor
是1.2,那么每个后续的图像都是将前一个图像的宽度和高度缩小20%得到的。
示例解释
- 初始图像尺寸:假设你的原始图像尺寸是1200x600像素。
- 第一次缩放:如果
scaleFactor
设为1.2,那么第一次缩放后的图像大小将是原来的1/1.2,也就是1000x500像素(大约)。 - 第二次缩放:然后,基于第一次缩放的结果,再次缩放图像,尺寸变为833x417像素(1000/1.2和500/1.2,大约)。
这个过程会持续进行,直到图像缩小到无法满足检测窗口的尺寸为止。每次缩放都会生成新的图像尺度,算法会在每个尺度上尝试找到面部。这就允许了算法能够检测到不同大小的面部:大的面部可能会在较大的尺度上被检测到,而小的面部则可能在更小的尺度上被发现。
通过这种方式,scaleFactor
控制着图像尺度金字塔的“粒度”或层次的数量。较小的scaleFactor
会生成更多的层次,从而提高检测小面部的能力,但同时也会增加计算复杂性和时间。