目标检测——基于yolov8和pyqt的螺栓松动检测系统

1.项目克隆和环境配置

1.1 我这里使用的是v8.0.6版本

这里为了方便学习,我使用的是旧的版本,先从官网上Tag下找到v8.0.6版本的安装包,然后下载解压,下面就是项目下载地方
在这里插入图片描述

1.2 项目代码结构介绍

将这个版本的yolov8下载到本地后整个项目结构和下面这张图是类似的,整体项目结构和v5有些不同,其中重要的代码都在ultralytics中
在这里插入图片描述
|——bolt_datasets:这个里面存放的是我用来进行螺栓松动检测的数据集。
|——docker:是一个应用容器引擎。
|——doc:这里面的东西不用管。
|——example:这里面是下载ultralytics这个python库,用这个来进行训练和推理的一 些例子。
|——Flowers_Dataset:这是另一个花朵数据集。
|——ultralytics:这里面包含模型配置,数据集配置yolov8模型的实现等。

ultralytics中代码结构如下图,主要使用的是ultralytics\yolo\v8\classify\predict.py这部分代码,如果想用自己的数据集训练模型可以看这篇文章,v8和v5项目结构有一些变化,不过数据集处理等是一样的,用python中labeling标注数据。
在这里插入图片描述
在这里插入图片描述

2.数据集介绍

2.1 数据集采集

我是用的自己手机进行采集的,用三脚架固定手机,通过调整手机高度、距离螺栓远近和拍摄角度来采集数据的。
总共拍摄了5个松动的10秒视频和5个拧紧的10秒视频,再将视频处理为一帧一帧的形式生成一个数据集,将每帧调整为640×640大小的图片,最后使用其中的200张图片训练,每张图片包含4个螺栓。

2.2采集结果介绍

上面两张是螺栓拧紧的图片,下面两张是螺栓松动的图片
在这里插入图片描述
下面是我用yolov8进行训练的的数据集结构,制作类似这样的数据集可以看这篇文章,该数据集共800个螺栓,图片大小为640×640,训练集和测试集比例为9:1。
在这里插入图片描述

3.模型训练

先修改ultralytics\yolo\configs\default.yaml这部分中的配置文件,我是用的是预训练yolov8n.pt模型进行训练,共训练100次,最后训练出的文件如下图
在这里插入图片描述

4.pyqt界面设计

4.1 界面内容介绍

界面中内容包括5个部分,分别是检测窗口、检测结果与位置信息、检测参数设置、检测结果和操作。检测窗口用来显示图片,检测结果与位置信息显示序号、检测图片文件路径、目标编号、类别、置信度和坐标位置这六个部分,然后检测参数包括阈值和交并比阈值,还有检测结果和操作等等。

4.2 界面实现

这里我用的是python带的pyqt5写的,用designer设计布局,再将ui文件转为py文件,这里注意一定要使用界面布局,这样整个界面布局更清晰并且也能放大放小,不容易混乱。
下面是我的界面图:
在这里插入图片描述

5.操作中的逻辑实现

我的实现方法是在detect\predict.py这个文件内容上新创建了一个类来实现操作中功能,这个类能初始化界面,实现按钮功能等。

5.1 图片检测

实现步骤大致为三步,打开要检测的图片,对图片进行检测,最后将检测结果显示在界面上。
用QFileDialog打开图片,打开图片后用yolo\engine\predictor中的类实例进行检测,检测过程中同过yield返回必要的数据,包括模型model、检测花费时间tm和原图im0s。之后根据返回的信息存储边界框、置信度、类别序号信息,向界面tableview和comboBox中插入信息等操作。
具体代码

    # 文件中图片检测
    def open_file(self):   
        folder_path = QFileDialog.getExistingDirectory(self, 'Select Folder', '')
        # 清空表格数据
        row_count = self.tb_model.rowCount()
        self.tb_model.removeRows(0, row_count)
        self.flag == 0
        for filename in os.listdir(folder_path):
            self.sum = 0
            # 构造完整的文件路径
            file_path = os.path.join(folder_path, filename)

            # # 检查文件是否是图片文件,可以根据文件扩展名来判断
            if file_path.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')):
                self.fileName1 = file_path
                try:
                    for model, tm, im in self.predict():
                        print(self.save_dir)
                        self.model = model
                        det = self.predictor.output['det']
                        self.det = det

                        # 存储结果,向tableview和comboBox中添加信息
                        self.image_detections[self.fileName1] = det # 存储检测结果
                        self.image_path[filename] = file_path
                        self.image_tm[self.fileName1] = tm
                        self.image_allLabel[self.fileName1] = os
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值