Leetcode 搜索旋转排序数组

文章描述了一种在已知升序排列但经过未知旋转的整数数组中,利用优化的二分查找算法寻找特定目标值的方法。算法重点在于判断二分查找过程中左右子区间的顺序,并相应调整搜索范围,以达到O(logn)的时间复杂度。
摘要由CSDN通过智能技术生成

题目

整数数组 nums 按升序排列,数组中的值 互不相同 。

在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。

给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。

时间复杂度为 :O(log n) 的算法

来源:力扣(LeetCode)

链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

思路

“变式二分”

在常规二分查找基础上查看当前mid分割出来的两部分[l,mid]和[mid + 1, r]哪个部分是有序的,并判断如何改变二分查找的上下界。

  • 如果[1, mid - 1]有序,且target的大小满足[nums[l], nums[mid]],则r = mid - 1,否则在[nums[mid + 1], nums[r]]中寻找

  • 如果[mid, r]有序,且target的大小满足[nums[mid + 1], nums[r]],则l = mid + 1,否则在[nums[l], nums[mid - 1]]中寻找


classSolution {
public:
    intsearch(vector<int>&nums, inttarget) {
        intn= (int)nums.size();
        intl=0, r=n-1;
        while(l<=r)
        {
            intmid=l+r>>1;
            if(nums[mid] ==target) returnmid;
            if(nums[0] <=nums[mid])  //左边有序
            {
                if(nums[0] <=target&&target<nums[mid])  r=mid-1;
                elsel=mid+1; //否则 target比nums[mid]大或target比nums[0]小
            }
            else
            {
                if(nums[mid] <target&&target<=nums[n-1]) l=mid+1;
                elser=mid-1; 
            }
        }
        return-1;
    }
};

注意:使用nums[0]和nums[n-1]判断是否有序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值