International Journal of Complexity in Applied Science and Technology收录进化计算,机器学习和大数据方面的论文。
单目标优化算法主要根据其工作原理和策略可以分为几类,以下是一些主要的经典算法及其特点:
-
传统优化算法:
- 穷举搜索(Exhaustive Search):通过枚举所有可能的解来找到最优解。适用于问题空间较小的情况,但计算成本通常很高。
- 单纯形法(Simplex Method):主要用于线性规划,通过不断移动多边形的顶点来寻找最优解。
-
启发式算法:
- 模拟退火算法(Simulated Annealing):模拟物理中的退火过程,以概率接受比当前解更差的解,有助于跳出局部最优解。
- 遗传算法(Genetic Algorithm):通过模拟自然选择和遗传机制,利用交叉、变异等操作来演化优良解,适用于复杂的非线性优化问题。
- 粒子群优化算法(Particle Swarm Optimization, PSO):模拟鸟群或鱼群的群体行为,通过个体的位置和速度更新来搜索最优解。
- 人工鱼群算法(Artificial Fish Swarm Algorithm):模拟鱼群觅食行为,通过觅食、觅食效率和群体协作来优化解的搜索。
- 蚁群算法(Ant Colony Optimization, ACO):模拟蚂蚁寻找食物的行为,通过信息素的更新和路径选择来寻找最优解。
-
进化算法(续):
- 遗传规划(Genetic Programming, GP):使用进化算法来优化生成程序(通常是树状结构),适用于符号回归和符号分类等问题。
- 差分进化算法(Differential Evolution, DE):通过引入差分操作,使用基于向量的演化策略来寻找全局最优解。
-
优化算法:
- 牛顿法和拟牛顿法:通过计算目标函数的梯度信息来寻找最优解,适用于连续可微的优化问题。
- 共轭梯度法(Conjugate Gradient):适用于二次型目标函数,通过共轭方向的迭代来加速收敛过程。
- Levenberg-Marquardt算法:主要用于非线性最小二乘问题,结合了牛顿法和梯度下降法的优点。
- 信赖域方法(Trust Region Methods):在每个迭代步骤中定义一个信赖域,限制解的移动范围以确保步长适当和有效。
-
其他启发式和元启发式算法:
- 禁忌搜索(Tabu Search):通过记忆搜索过程中的禁忌移动,避免陷入局部最优解。
- 粒子群优化算法(Particle Swarm Optimization, PSO):模拟鸟群或鱼群的群体行为,通过个体的位置和速度更新来搜索最优解。
- 模拟退火算法(Simulated Annealing):模拟物理中的退火过程,以概率接受比当前解更差的解,有助于跳出局部最优解。