这个示例代码用于运行图算法。该程序支持不同的任务类型,例如计算PageRank、计算连通组件和计算三角形的数量。
这段代码检查了命令行参数的数量是否足够,并在不满足条件的时候打印出使用说明。如果args数组长度小于2,表示命令行参数不足,无法执行相应的任务。在这种情况下,会将使用说明字符串赋值给usage变量,并使用System.err.println方法将其打印到标准错误流中。通过调用System.exit(1)来终止程序的执行。
这段代码用于解析命令行参数,并将任务类型、文件名以及其他选项保存到相应的变量中。arg(0)表示第一个命令行参数,即任务类型,并将其赋值给taskType变量。args(1)表示第二个命令行参数,即文件名,将其赋值给fname变量。arg.drop(2)返回去除前两个元素之后的剩余命令行参数,然后使用map方法对每个参数进行处理。
对于每个参数,使用dropWhile(_==’-’)去除开头的连字符,然后使用split(‘=’)将参数按等号=分割成键值对数组。
使用模式匹配,case Array(opt,v)=> (opt,v),将键值对数组中的第一个元素作为键,第二个元素作为值,构成元组。如果模式匹配失败,即参数不是有效的键值对格式,则抛出一个异常。最后,使用mutable.Map(options:_*)构建一个可变的Map,将解析得到的选项存储其中。
通过以上代码,可以获取任务类型、文件名以及其他选项,并在后续的代码中使用它们进行相应的处理和配置。
这段代码创建了一个SparkConf对象,并注册了GraphX所需要的Kryo类。
Val conf = new SparkConf()创建了一个新的SparkConf对象,用于配置Spark应用程序。GraphXUtils.registerKeyoClasses(conf)注册了GraphX所需的Kryo类。这样做是为了提高序列化和反序列化性能,以及减少网络传输的开销。
接下来,代码使用options来获取一些配置选项。
val numEPart = options.remove("numEPart").map(_.toInt).getOrElse{...}从options中移除键为”numEPart”的选项,并将其转换为整数类型。如果不存在该选项,则会执行{...}中的代码块,在控制台打印"Set the number of edge partitions using --numEPart."使用--numepart设置边缘分区的数量。然后终止程序的运行。
options.remove("edgeStorageLevel").map(StorageLevel.fromString(_)).getOrElse(StorageLevel.MEMORY_ONLY) 从options中移除键为“edgeStorageLevel”的选项,并将其值转换为StorageLevel枚举类型的实例。如果不存在该选项,则返回默认值StorageLevel.MEMORY_ONLY
options.remove("vertexStorageLevel").map(StorageLevel.fromString(_)).getOrElse(StorageLevel.MEMORY_ONLY) 从options中移除键为“vertexStorageLevel”的选项,并将其值转换为StorageLevel枚举类型的实例。如果不存在该选项,则返回默认值StorageLevel.MEMORY_ONLY
通过以上代码,可以获取和配置一些 Spark 和 GraphX 相关的属性和选项,以便后续使用。
这代代码执行的主要操作如下:
对于任务类型“pagerank”
1. 从options中获取“tol”选项的值,并将其转化为浮点数类型。若不存在该选项,则默认0.001。将其赋值给tol变量
2. 从options中获取“output”选项的值,并将其赋值给outFname变量。如果不存在该选项,则将outFname设置为空字符串。
3. 从options中获取“numlter”选项的值,并将其转换为整数类型。如果不存在该选项,则将numIterIOpt设置为None。
4. 打印出PageRank相关信息的标题。
5. 创建一个 SparkContext 对象,设置应用程序名称为 "PageRank($fname)"。
6. 使用 GraphLoader.edgeListFile 方法加载边列表文件并创建图。将图进行缓存。
7. 根据指定的分区策略对图进行分区。
8. 打印出图的顶点数量和边的数量。
9. 根据是否指定了迭代次数,运行 PageRank 算法,并将结果缓存到 pr 变量中。
10. 打印出总排名
11. 如果制定了输出文件名,则将页面的PageRank保存到文件中。
12. 停止SparkContext。
对于任务类型为“cc”的时候,代码执行以下操作:
- 使用options.foreach遍历剩余的选项,并抛出异常,因为这些选项不是有效的选项。
- 打印出连通组件相关信息的标题
- 创建一个SparkContext对象,设置应用名称为“ConnectedComponents($fname)”
- 使用 GraphLoader.edgeListFile 方法加载边列表文件并创建图。将图进行缓存。
- 根据指定的分区策略对图进行分区。
- 运行 Connected Components 算法,并将结果保存到 cc 变量中。
- 打印出组件的数量。
- 停止 SparkContext。
这段代码是使用Spark进行三角形计数的一个案例。首先,对给定的选项进行检查,如果选项无效,则抛出IllegalArgumentException异常。然后,打印程序的标题和分隔线。
接下来,创建了一个SparkContext,并根据指定的参数加载图数据。加载的图数据需要被分区,并且将被缓存起来。然后,利用TriangleCount算法对图进行三角形计数。最后,将计算出的三角形数量打印出来,并停止SparkContext的运行。
如果希望调用此应用程序,需要提供一下参数:
任务类型(taskType):指定要执行的任务类型,可选的值有 "pagerank"、"cc" 和 "triangles"。
文件名(file):指定输入文件的路径。
其他选项(options):根据任务类型和需求,可以提供一些额外的选项。
执行PageRank算法,并将结果保存到指定文件中
spark-submit --class org.apache.spark.examples.graphx.Analytics \
path/to/your/jar.jar pagerank path/to/input/file.txt \
--numEPart=4 --output=path/to/output/file.txt
计算连通组件,并打印出每个顶点所属的连通组件
spark-submit --class org.apache.spark.examples.graphx.Analytics \
path/to/your/jar.jar cc path/to/input/file.txt --numEPart=4
计算图中的三角形数量,并打印出结果。
spark-submit --class org.apache.spark.examples.graphx.Analytics \
path/to/your/jar.jar triangles path/to/input/file.txt --numEPart=4
请确保将上述命令中的"path/to/your/jar.jar"替换为你的jar文件的实际路径,将"path/to/input/file.txt"替换为你的输入文件的实际路径,将"path/to/output/file.txt"替换为你希望保存输出结果的文件路径。另外,你还可以根据需要添加其他选项。
总结:
这些算法都是基于图的结构和连接关系展开计算的。PageRank算法用于评估节点的重要性,连通组件算法用于确定节点之间的连通性,三角形计数算法用于统计节点之间的三角形关系。它们都可以通过Apache Spark和GraphX库进行高效的分布式计算。实际实现中可能还会包括一些优化策略和细节处理,以提高性能和准确性。
PageRank算法。PageRank算法通过迭代计算来评估每个顶点的重要性。其具体步骤为:初始化每个顶点的PageRank值为1.0。在每次迭代中,对于每个顶点,计算他的PageRank值。计算公式为:PR(v) = (1 - dampingFactor) + dampingFactor * sum(PR(u) / outDegree(u)),其中v为当前的顶点,u为与v相连的顶点,outDegree(u)表示顶点u的出度。迭代执行上述计算步骤,直到达到指定的最大迭代次数或收敛条件满足。最后将每个顶点的PageRank值输出。
连通组件算法。连通组件算法用于确定图中各个顶点所属的连通组件。具体步骤为:从一个顶点开始,遍历图中的边,找到与该顶点相连的所有其它顶点,并将它们标记为同一个连通组件。继续选择一个未被标记的顶点,并重复上述步骤,直到所有顶点都被标记。最后,输出每个顶点所属的连通组件。
三角形计数算法:三角形计数算法用于计算图中的三角形数量。具体步骤如下:遍历图中的每个顶点V,并考虑其邻居顶点U。对于每个邻居顶点U,再遍历它的邻居顶点W,并检查是否存在V到W的边,从而形成一个三角形。统计所有找到的三角形数量,并输出结果。