逻辑回归的数学原理与MLP的思想之根

对于连续的问题使用线性回归和多项式回归是有效的,但是对于数据特征呈现出较强的离散性时,则必须使用逻辑回归。如下图所示:
在这里插入图片描述
橙色和青色的点如果直接用线性回归来拟合显然是效果不好的。
在这里插入图片描述
一个很自然的感觉是上述两种数据呈现阶跃函数形状,这是由信号与系统的知识背景联想得到。但是阶跃函数本身的性质不好处理(如微分),对于计算机来说并没有太大的实际意义,因此研究者们找到了sigmoid函数来替代阶跃函数。
s i g m o i d ( x ) = 1 1 + e − x (1) \begin{aligned} sigmoid(x)=\frac{1}{1+e^{-x}}\tag{1} \end{aligned} sigmoid(x)=1+ex1(1)
按照线性回归对数据进行处理,得到如下的直线方程:
y ( x ) = a x + b (2) \begin{aligned} y(x)=ax+b\tag{2} \end{aligned} y(x)=ax+b(2)
sigmoid函数接受任意大小实数为输入值,输出值将其限制在 0 − 1 0 -1 01之间。如果我们将得到的直线方程 ( 2 ) (2) (2)作为sigmoid函数的输入,那么最终模型的输出值将在 0 − 1 0-1 01之间,这又于概率联系起来。
P ( x ) = 1 1 + e − ( a x + b ) (3) \begin{aligned} P(x)=\frac{1}{1+e^{-(ax+b)}}\tag{3} \end{aligned} P(x)=1+e(ax+b)1(3)
( 3 ) (3) (3)式整理得到:
l o g P ( x ) 1 − P ( x ) = a x + b (4) \begin{aligned} log\frac{P(x)}{1-P(x)}=ax+b\tag{4} \end{aligned} log1P(x)P(x)=ax+b(4)
l o g P ( x ) 1 − P ( x ) log\frac{P(x)}{1-P(x)} log1P(x)P(x)被称为对数几率函数 ( L o g − o d d s ) (Log-odds) (Logodds) P ( x ) 1 − P ( x ) \frac{P(x)}{1-P(x)} 1P(x)P(x)被称为几率 ( o d d s ) (odds) (odds)
在这里插入图片描述
因此,逻辑回归模型只需要设置合理的阈值即可完成分类任务,比如此处设置阈值为 0.5 0.5 0.5。需要注意的是逻辑回归只能用于解决二分类问题,将他推广为多项逻辑回归模型,也就是 s o f t m a x softmax softmax回归,可以处理多类分类问题。
逻辑回归具有如下的优点:
1.直接对分类概率建模,无需实现假设数据的分布;
2.不仅可以预测出类别,还可以预测出近似概率;
3.对数几率函数性质好,任意阶可导且是凸函数;

逻辑回归(logistic regression)由统计学家David Cox于1958年提出,同年,美国心理学家 Frank Rosenblatt提出了感知机,此时的感知机激活函数仍然为传统的阶跃函数。可以说,逻辑回归的思想影响了人工神经网络的发展,将单纯的离散分类问题转换为了求解概率的连续问题,也为后来大名鼎鼎的 B P BP BP算法打下基础。如今,具有惊人效果的神经网络中必不可少的激活函数机制,其根在逻辑回归,可见科学的大厦就是这样一步一步建成的。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
课程导语:    人工智能可谓是现阶段最火的行业,在资本和技术协同支持下正在进入高速发展期。当今全球市值前五大公司都指向同一发展目标:人工智能。近几年,人工智能逐渐从理论科学落地到现实中,与生活越来越息息相关,相关的各种职位炙手可热,而深度学习更是人工智能无法绕开的重要一环。 从AlphaGo打败李世石开始,深度学习技术越来越引起社会各界的广泛关注。不只学术界,甚至在工业界也取得了重大突破和广泛应用。其中应用最广的研究领域就是图像处理和自然语言处理。而要入门深度学习,CNN和RNN作为最常用的两种神经网络是必学的。网上关于深度学习的资料很多,但大多知识点分散、内容不系统,或者以理论为主、代码实操少,造成学员学习成本高。本门课程将从最基础的神经元出发,对深度学习的基础知识进行全面讲解,帮助大家迅速成为人工智能领域的入门者,是进阶人工智能深层领域的基石。 讲师简介:赵辛,人工智能算法科学家。2019年福布斯科技榜U30,深圳市海外高层次人才(孔雀人才)。澳大利亚新南威尔士大学全奖博士,SCI收录其发表过的10篇国际期刊学术文章。曾任深圳市微埃智能科技有限公司联合创始人。CSDN人工智能机器学习、深度学习方向满分级精英讲师。授课风格逻辑严谨、条理清晰、循序渐进、循循善诱,化枯燥为如沐春风,所教学生人数过万。 课程设计: 本课程分为5大模块,19小节,共计540时长(约9小时): 第一部分,课程介绍、目标与内容概览。主要学习人工智能深度学习应用场景;熟悉深度学习主流技术;掌握使用keras解决深度学习主要问题(神经网络、卷积神经网络、循环神经网络),以及深度学习主要内容:神经网络、卷积神经网络、循环神经网络;案例简介。 第二部分,深度学习之多层感知器(MLP)。主要学习多层感知器(MLP);MLP实现非线性分类;深度学习实战准备;Python调用keras实现MLP。 MLP技术点实战案例:第三部分,深度学习之卷积神经网络(CNN)。主要学习卷积神经网络 ; CNN模型分析;主流CNN模型; Python调用keras实现CNN; CNN技术点实战案例:第四部分,深度学习之循环神经网络(RNN)。主要学习循环神经网络;RNN模型分析;Python调用keras实现RNN。 RNN技术点实战案例: 第五部分,综合提升。主要进行迁移学习;混合模型;实战准备+综合实战,以及最后进行课程内容总结。 混合模型技术点实战案例
机器视觉是指计算机通过对图像或视频进行处理和分析,从中获取有关物体、场景和动作的信息。深度学习是机器学习的一个分支,它通过构建深层神经网络来模拟人脑的工作原理,从而实现对复杂数据的学习和理解。 MLP(多层感知器)是深度学习中最基本的神经网络模型之一。它由多个神经元组成的输入层、若干个隐藏层和一个输出层构成。每个神经元都与前一层的所有神经元相连,并且每个连接都有一个权重。MLP数学原理可以分为两个部分:前向传播和反向传播。 1. 前向传播: 在前向传播过程中,输入数据通过网络的各个层,逐层进行加权求和和激活函数处理,最终得到输出结果。具体步骤如下: - 输入层:将输入数据传递给第一个隐藏层。 - 隐藏层:每个神经元接收前一层的输出,并根据权重进行加权求和,然后通过激活函数进行非线性变换,得到输出结果。 - 输出层:最后一个隐藏层的输出作为输入,经过加权求和和激活函数处理后,得到最终的输出结果。 2. 反向传播: 反向传播是用来更新网络中的权重,使得网络的输出结果与实际结果更加接近。具体步骤如下: - 计算损失函数:通过比较网络输出结果和实际结果,计算出网络的误差。 - 反向传播误差:从输出层开始,根据误差和权重,逐层计算每个神经元的误差。 - 更新权重:根据误差和学习率,使用梯度下降算法更新每个连接的权重,使得误差逐渐减小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值