第十七届黑龙江省大学生程序设计竞赛 E.Exclusive Multiplication 个人题解(简单莫比乌斯反演)

E-Exclusive Multiplication_“统信杯” 第十七届黑龙江省大学生程序设计竞赛(正式赛) (nowcoder.com)

题意:设一个整数n,n=\prod_{i=1}^{m}p_i^{a_i},定义f(n)=\prod_{i=1}^{m}p_i^{a_i%2},

现在给你一个长度为n的序列b,问

\sum_{i=1}^{n}\sum_{j=i+1}^{n}f(b_i\times b_j)=?

知识点:莫比乌斯反演

思路:

首先,我们先想办法把俩下标都改成从1开始到n,

\sum_{i=1}^{n}\sum_{j=i+1}^{n}f(b_i\times b_j)=\frac{\sum_{i=1}^{n}\sum_{j=1}^{n}f(b_i\times b_j)(1)-\sum_{i=1}^{n}f(b_i^2)(2)}{2}

现在我们的问题是求(1),(2)

然后,我们开始看f函数,容易发现f(p\times q)=f(\frac{p}{gcd(p,q)})\times f(\frac{q}{gcd(p,q)})

所以,(2)=\sum_{i=1}^{n}f(1)\times f(1)=n.

(1)=\sum_{i=1}^{n}\sum_{j=1}^{n}f(\frac{b_i}{gcd(b_i,b_j)})\times f(\frac{b_j}{gcd(b_i,b_j)}),

接下来是套路化的东西,我们定义m=max(b_i),has_i为i的个数

(1)=\sum_{i=1}^{m}\sum_{j=1}^{m}f(\frac{i}{gcd(i,j)})\times f(\frac{j}{gcd(i,j)})\times has_i \times has_j

枚举d

(1)=\sum_{d=1}^{m}\sum_{i=1}^{m}\sum_{j=1}^{m}f(\frac{i}{d})\times f(\frac{j}{d})\times has_i \times has_j[gcd(i,j)==d]

(1)=\sum_{d=1}^{m}\sum_{i=1}^{\frac{m}{d}}\sum_{j=1}^{\frac{m}{d}}f(i)\times f(j)\times has_{id} \times has_{jd}[gcd(i,j)==1]

莫反,枚举T

(1)=\sum_{T=1}^{m}u(T)\sum_{d=1}^{\frac{m}{T}}\sum_{i=1}^{\frac{m}{Td}}\sum_{j=1}^{\frac{m}{Td}}f(iT)\times f(jT)\times has_{idT} \times has_{jdT}

设Q=dT,枚举Q

(1)=\sum_{Q=1}^{m}\sum_{T|Q}u(T)(\sum_{i=1}^{\frac{m}{Q}}f(iT)\times has_{iQ})^2

定义g(Q)=\sum_{T|Q}u(T)(\sum_{i=1}^{\frac{m}{Q}}f(iT)\times has_{iQ})^2

我们可以暴力预处理,整体复杂度是\sum_{i=1}^{m}\left \lfloor \frac{m}{i} \right \rfloor d(i)(d(i)表示i的约数个数),在m=2e5时为16782730,肯定是够的,所以就出来了,关于f(i),我们直接O(n)预处理就可以了,具体可以看代码

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 2e5+5;
const ll mod =1e9+7;
ll p[N],cnt,f[N],u[N],g[N];
bool v[N],low[N];//low(i)表示i的最小质数的个数
void init(){
    u[1]=1;f[1]=1;
    for(ll i=2;i<N;++i){
        if(!v[i])p[cnt++]=i,u[i]=-1,f[i]=i,low[i]=1;//质数是f(i)=i,low(i)=1
        for(ll j=0;j<cnt&&i*p[j]<N;++j){
            v[i*p[j]]=true;
            ll now=i*p[j];
            if(i%p[j]==0){//如果i和p[j]不互质
                //i的最小质数个数是奇数,再+1肯定是偶数,把p[j]消去
                if(low[i]&1)f[now]=f[i]/p[j];
                else f[now]=f[i]*p[j];
                //i的最小质数个数是偶数,再+1肯定是奇数,把p[j]乘进去

                low[now]=low[i]^1;//个数变一下
                break;
            }
            f[now]=f[i]*p[j];//互质直接乘
            low[now]=1;//最小质数个数肯定是1
            u[now]=-u[i];
        }
    }
}
ll n,b,has[N],maxx;
void solve(){
    cin>>n;
    for(int i=1;i<=n;++i){
        cin>>b;
        has[b]++;//定义
        maxx=max(maxx,b);
    }
    ll ans=0;
    for(ll i=1;i<=maxx;++i){
        for(ll j=i;j<=maxx;j+=i){//i是j的因子
            ll res=0;
            for(ll w=1;w<=(maxx/j);++w)res=(res+f[i*w]*has[j*w]%mod)%mod;//式子
            res=res*res%mod;
            g[j]=(g[j]+u[i]*res%mod+mod)%mod;//式子
        }
        ans=(ans+g[i])%mod;//累加
    }
    ll inv2=(mod+1)/2;//记得是模意义下
    ans=(ans-n+mod)%mod*inv2%mod;
    cout<<ans<<'\n';//答案
}
int main() {
    init();
    ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
    int _=1;//cin>>_;
    while(_--){
        solve();
    }
    return 0;
}
/*
*/

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值