Dashboard - Codeforces Round #536 (Div. 2) - Codeforces
A. Lunar New Year and Cross Counting
题意:给一个n*n的网格,网格由'.'和'X'构成,问M(i,j)=M(i−1,j−1)=M(i−1,j+1)=M(i+1,j−1)=M(i+1,j+1)= 'X'.有多少对(i,j) ? (其实就是问网格上有多少个长3宽3的X图形)
知识点:暴力
思路:对于每一个(i,j)暴力判他的本身,左上,左下,右上,右下是不是都是'X'就可以了
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 5e5+5;
const ll mod =998244353;
char mp[505][505];
void solve(){
ll n;cin>>n;
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
cin>>mp[i][j];
}
}ll ans=0;
for(int i=2;i<n;++i){
for(int j=2;j<n;++j){
if(mp[i][j]=='X'){//本身
if(mp[i+1][j+1]=='X'//右下
&&mp[i+1][j-1]=='X'//右上
&&mp[i-1][j+1]=='X'//左下
&&mp[i-1][j-1]=='X'){//左上
ans++;
}
}
}
}
cout<<ans<<'\n';
}
int main() {
ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
int _=1;//cin>>_;
while(_--){
solve();
}
return 0;
}
B. Lunar New Year and Food Ordering
题意:有n种物品,每种物品有对应的价值和个数,现在有m个顾客,每个顾客有自己喜爱的物品种类和要点的个数,如果当前这个顾客喜爱的种类的个数不能满足要求,则再还有的物品中拿价值最小的物品来补充,如果仍然没有满足顾客需要的个数,顾客就会离开(不花费钱)。问m个顾客一共要花费多少钱。
知识点:模拟,优先队列
思路:维护一个数组表示每个种类的物品还剩下几个,然后因为有价值最小的补充,可以开一个优先队列来维护还剩下的种类物品的最小价值。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 1e5+5;
const ll mod =998244353;
struct dd{
ll a,c,id;
inline bool operator <(const dd &r)const{
return c>r.c;//重载小于号使得小的先出队列
}
}op[N];
ll n,m,t,d;
void solve(){
cin>>n>>m;
for(int i=1;i<=n;++i)cin>>op[i].a,op[i].id=i;
for(int i=1;i<=n;++i)cin>>op[i].c;
priority_queue<dd>q;
for(int i=1;i<=n;++i)q.push(op[i]);//全部插入优先队列中
for(int i=1;i<=m;++i){
cin>>t>>d;ll res=0;
if(op[t].a>=d){//如果当前种类物品比顾客需要的还多
op[t].a-=d;
res=d*op[t].c;
d=0;//说明满足了顾客的需求
}
else {//如果当前种类物品比顾客需要的少
res=op[t].c*op[t].a;
d-=op[t].a;
op[t].a=0;
while(!q.empty()){
auto g=q.top();q.pop();
g.a=op[g.id].a;
if(g.a>=d){
res+=d*g.c;
g.a-=d;
if(g.a)q.push({g.a,g.c,g.id});
op[g.id].a=g.a;//更新一下当前种类物品的个数
d=0;//说明满足了顾客的需求
break;
}
else {
res+=g.a*g.c;
d-=g.a;
op[g.id].a=0;//更新一下当前种类物品的个数
}
}
}
if(d)cout<<0<<'\n';//没有满足顾客需求
else cout<<res<<'\n';
}
}
int main() {
ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
int _=1;//cin>>_;
while(_--){
solve();
}
return 0;
}
C. Lunar New Year and Number Division
题意:给你一个正整数n,n一定是一个偶数,现在有一个长度为n个数组,你需要把这个数组分成任意份,每份要保证元素个数大于等于2,设每份的元素总和为,问最小是多少?
知识点:数学,贪心,蒙(不是
思路:可以大概猜到一个分成n/2份,每份是最大和最小,次大和次小...........以此类推,所以只要排序一下,就能解决问题。
证明1:对于最后的答案一定会出现+w(w类似),因为,所以对于一定是大于0的,我们要尽可能减少这样的项出现,所以每一份一定是俩个数。
证明2:假设0<a<b<c<d,我们要证明ad+bc<=ab+cd 和 ad+bc<=ac+bd
第一个很好证明
移项后变成 a(d-b)+c(b-d)<=0
也就是 (a-c)(d-b)<=0这是显然的
第二个的话
同样的 移项后变成 a(d-c)+b(c-d)<=0
也就是 (a-b)(d-c)<=0这也是显然的
所以我们猜的那个结论是正确的
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 3e5+5;
const ll mod =998244353;
ll n,a[N];
void solve(){
cin>>n;
for(int i=1;i<=n;++i)cin>>a[i];
sort(a+1,a+n+1);
ll ans=0;
for(int i=1;i<=(n/2);++i){
ans+=(a[i]+a[n-i+1])*(a[i]+a[n-i+1]);//注意理清楚下标
}
cout<<ans<<'\n';
}
int main() {
ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
int _=1;//cin>>_;
while(_--){
solve();
}
return 0;
}
D. Lunar New Year and a Wander
题意:一个有n个点,m条边(双向)的图,可能有重边和自环,有一个人从点1开始走,这个人开始的时候手上有一个数字,每次走到一个没有走过的点就会把手上的数字+1,并且把这个点的赋值为手上的数字,问最小的d序列?
知识点:BFS
思路:要让序列最小,肯定想每次先走现在可以走的最小的序号,所以我们可以想到BFS来解决,开一个以序号从小到大排序的优先队列就可以了。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 1e5+5;
const ll mod =998244353;
ll n,m;
vector<ll>mp[N],ans;
bool vis[N];
void bfs(){
priority_queue<ll,vector<ll>,greater<ll> >q;//从小到大排序的优先队列
q.push(1);//1先进去
vis[1]=true;
while(!q.empty()){
ll g=q.top();q.pop();
ans.push_back(g);//记录答案
for(auto v:mp[g]){
if(vis[v])continue;
vis[v]=true;
q.push(v);//把现在能走的点都扔进队列里
}
}
}
void solve(){
cin>>n>>m;
for(ll i=1,u,v;i<=m;++i){
cin>>u>>v;
mp[u].push_back(v);
mp[v].push_back(u);
}
bfs();
for(auto w:ans)cout<<w<<' ';
}
int main() {
ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
int _=1;//cin>>_;
while(_--){
solve();
}
return 0;
}
E. Lunar New Year and Red Envelopes
题意:现在有k个红包,第i个红包只能在到的时间获取的钱,并且在获取后直到时间都不能拿别的红包,现在有一个十分贪婪的人,他会有n个时间去获取红包,只要当前时间能拿红包,他就会拿当前时间能拿红包的最大值,如果有最大值相同的拿d最大的,现在你可以干扰他m个时间,让他不拿,问他拿到的钱数的最小值?
知识点:DP,数据结构
思路:其实很容易想到dp[i][j],表示前i个时间干扰m次他能拿到钱数的最小值,转移的话,
如果第i个时间不能拿任何红包,那么dp[i][j]=max dp[i-1][j]
如果第i个时间能拿红包且我们去干扰,那么dp[i][j]=max dp[i-1][j-1]]
如果第i个时间能拿红包且我们不去干扰,那么dp[ d ][j]=max dp[i-1][j]]+w
所以现在只有一个问题就是如何知道当前时间所能选到的的最大值,并且要知道。
我们可以先按s,t 排序 ,再开一个以w和d排序的优先队列,每次把s<=i的点扔进队列里,把t<i的点扔出去,这样就可以解决问题了。(具体可以看代码)
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 1e5+5;
const ll mod =998244353;
ll n,m,k;
struct dd{
ll s,t,d,w;
inline bool operator <(const dd &r)const{
if(s==r.s){
return t<r.t;//如果俩个s大小相等,t小的排前面
}
return s<r.s;//s小的排前面
}
}op[N];
struct up{
ll s,t,d,w;
inline bool operator <(const up &r)const{
if(w==r.w){
return d<r.d;//w相等,d大的先看
}
return w<r.w;//w大的先看
}
};
ll dp[N][205];
void solve(){
cin>>n>>m>>k;
priority_queue<up>q;
for(int i=1;i<=k;++i){
cin>>op[i].s>>op[i].t>>op[i].d>>op[i].w;
}
sort(op+1,op+k+1);
for(int i=1;i<=n;++i){
for(int j=0;j<=m;++j)dp[i][j]=1e18;//初始化,因为有取min
}
ll l=1;
for(int i=1;i<=n;++i){
while(l<=k&&op[l].s<=i){
q.push({op[l].s,op[l].t,op[l].d,op[l].w});//如何当前点的s小于等于i那他一定包含了
l++;
}
ll w=0,d=0;
while(!q.empty()){
auto g=q.top();
if(g.s<=i&&i<=g.t){//如果符合,就是找到了
w=g.w;d=g.d;
break;
}
else q.pop();//不符合说明i>t了,pop出去
}
for(int j=0;j<=m;++j){
if(w){//有红包
if(j>=1)dp[i][j]=min(dp[i-1][j-1],dp[i][j]);//不干扰
dp[d][j]=min(dp[d][j],dp[i-1][j]+w);//干扰
}
else {//没红包
dp[i][j]=min(dp[i-1][j],dp[i][j]);
}
}
}ll ans=1e18;
for(int i=0;i<=m;++i){
ans=min(ans,dp[n][i]);//找答案
}
cout<<ans<<'\n';
}
int main() {
ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
int _=1;//cin>>_;
while(_--){
solve();
}
return 0;
}
/*
*/
F. Lunar New Year and a Recursive Sequence
题意:给你一个长度为k的序列b和p=998244353,定义
现在知道,并且知道
求 等于几?如果不存在输出 -1
知识点:原根,矩阵快速幂,BSGS
思路:先观察定义,发现是个次幂的形式,这样不好找联系,发现p是个大质数,那么我们就可以转化次幂成乘法通过原根。
我们定义原根G
这里我们用到原根的:G的0~p-2次幂可以唯一的表示1~p-1(其实不是很严谨,但这里可以这么说
也就是我们可以转化定义为
再化一下
也就是我们可以通过矩阵快速幂来转移了,构造矩阵
因为,所以, ()
所以,(表示矩阵快速幂运算完后的矩阵第i行第j列的元素)
再带回去,,也就是
这个怎么求的值呢,我们可以通过BSGS算出,就求出来了,
最后答案.
那G又是多少呢,如果学过一点点NTT,我们可以知道998244353的原根是3,不知道也可以通过求原根的方法算出来。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 1e5+5;
const ll mod =998244352;
const ll Mod = 998244353;
const int maxl=105;
struct Matrix {
ll a[maxl][maxl];
int n,m;
inline Matrix(int n,int m) : n(n) , m(m) {
for(int i=0;i<n;++i){
for(int j=0;j<m;++j)a[i][j]=0;
}
}
inline void init(){
for(int i=0;i<n;++i){
for(int j=0;j<m;++j)a[i][j]=0;
a[i][i]=1;
}
}
inline void Clear(){
for(int i=0;i<n;++i){
for(int j=0;j<m;++j)a[i][j]=0;
}
}
inline Matrix operator * (const Matrix &t){
Matrix io(n,t.m);
for(int i=0;i<n;++i){
for(int j=0;j<t.m;++j){
for(int k=0;k<m;++k){
io.a[i][j]=(io.a[i][j]+a[i][k]*t.a[k][j]%mod+mod)%mod;
}
}
}
return io;
}
inline Matrix operator + (const Matrix &t){
Matrix io(n,m);
for(int i=0;i<n;++i){
for(int j=0;j<m;++j){
io.a[i][j]=(a[i][j]+t.a[i][j]+mod)%mod;
}
}
return io;
}
inline Matrix ksm(ll b){
Matrix ans(this->n,this->m),a=*this;
ans.init();
while(b){
if(b&1)ans=ans*a;
a=a*a;
b>>=1;
}
return ans;
}
};
ll ksm(ll a,ll b,ll p){
ll ans=1;
while(b){
if(b&1)ans=ans*a%p;
a=a*a%p;
b>>=1;
}
return ans;
}
ll BSGS(ll a,ll b,ll p){//求a^x=b %p的最小的x
a%=p;b%=p;
if(!a){
if(!b)return 1;
else return -1;
}
if(b==1)return 0;
ll n=ceil(sqrt(p)),res=b;
map<ll,ll>mp;
for(ll i=0;i<n;++i){
mp[res]=i;
res=res*a%p;
}a=ksm(a,n,p);res=a;
for(ll i=1;i<=n;++i){
if(mp.find(res)!=mp.end()){
return i*n-mp[res];
}
res=res*a%p;
}
return -1;
}
ll b[105],n,m;
void solve(){
ll k;cin>>k;
for(int i=1;i<=k;++i)cin>>b[i];
cin>>n>>m;
Matrix now(k,k);
for(int i=0;i<k;++i)now.a[0][i]=b[i+1];//构建
for(int i=1;i<k;++i)now.a[i][i-1]=1;// 矩阵
now=now.ksm(n-k);//矩阵的n-k次幂
ll ans=BSGS(ksm(3,now.a[0][0],Mod),m,Mod);//BSGS求出z_k
if(ans==-1)cout<<ans<<'\n';//无解
else cout<<ksm(3,ans,Mod)<<'\n';//输出答案
}
int main() {
ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
int _=1;//cin>>_;
while(_--){
solve();
}
return 0;
}
/*
*/