11、隐马尔科夫模型---第一问

1、理论

1、当前的状态只和前一状态有关:P(Zt | Zt-1,Xt-1,Zt-2,Xt-2,…,Z1,X1)=P(Zt | Zt-1)
2、某个观测只和生成它的状态有关:P (Xt | Zt)
Z:隐藏状态
X:观测状态
在这里插入图片描述

2、实例—盒子摸球(前向算法)

问题:
有3个盒子,每个盒子都有红色和白色两种球,分别为:
盒子1:5红5白
盒子2:4红6白
盒子3:7红3白
初始条件:
在这里插入图片描述
π:初始状态下,选择每个盒子的概率
A:行轴:t-1时刻选择每个盒子的概率
列轴:在t-1时刻的前提下,t时刻选择不同盒子的概率
B:选择了某个盒子,取到某个球的概率
得到的信息:
得到的观测序列:O={红,白,红}
观测状态集合:V={红,白},M=2
隐藏状态集合:Q={盒子1,盒子2,盒子3},N=3
解题:
在这里插入图片描述
在这里插入图片描述

3、暴力求解

1、算法讲解:
问题:
在给定模型的前提下,计算观测序列出现的概率P(O|λ)
λ:λ(π,A,B)都已知
思路:
将所有的隐藏序列列出来,就可以直到联合概率分布P(O,I |λ)
P(O,I |λ)=ΣI P(O,I |λ)
P(O,I |λ)=P(I|λ)P(O| I,λ):运用了链式求阶思路
P(I|λ):在模型已知的前提下,一个隐藏序列出现的概率
I={i1,i2,i3,…,iT}
T:序列个数,上图中T=3
P(I|λ)=P(i1,i2,i3,…,iT|λ)
=P(i1|λ)P(i2,i3,…,iT|i1,λ)
=P(i1|λ)P(i2|i1,λ)P(i3,…,iT|i2,i1,λ)
=P(i1|λ)P(i2|i1,λ)P(i3|i2,i1,λ)P(i4,…,iT|i3,i2,i1,λ)
因为当前状态只与上一个状态有关
=P(i1|λ)P(i2|i1,λ)P(i3|i2,λ)P(i4,…,iT|i3,i2,i1,λ)
=π(i1)*A(i1,i2)*A(i2,i3)…A(iT-1,iT)
O(T)
隐藏序列==>观测序列
P(O| I,λ)=B(i1,o1)B(i2,o2)…B(iT,oT)
P(O,I |λ)=ΣI P(O,I |λ)
=π(i1)*B(i1,o1)*A(i1,i2)B(i2,o2).*A(i2,i3)…A(iT-1,iT)B(iT,oT)

2、复杂度计算:

N个隐藏状态
O(TN^T)

4、前向算法

1、总体求解(思路)
t=T(最后时刻)
Ai(T):在最后时刻,隐藏状态为i上观测到X1,X2,…,XT指定一个的概率
将所有隐藏状态求和,就是所求P(O |λ)=ΣI P(O,I |λ)=A1(T)+A2(T)+,AN(T)
2、第一时刻
Ai(1)=π(i1)*B(i1,o1)
3、第t时刻
Ai(t)=π(i1)*B(i1,o1)*A(i1,i2)B(i2,o2).*A(i2,i3)…A(it-1,it)B(it,ot)
Ai(t+1)=(ΣAj(t)A(j,i))B(t+1)

4、总结
P(O |λ)=ΣI P(O,I |λ)=Σ-iAi(T)
-------咕泡学习中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值