我们经常会用到整型数据跟浮点型数据,怎么用相信大家都很明白,那么他们在内存中是怎么存储的你知道吗?
一、整型数据在内存中的存储
1、原码、反码、补码
我们先举个例子,定义int 型变量 a = 20 , 已知一个int型变量在内存中占4个字节(32个比特位)。
我们再定义一个int型变量b= -10,那么b在内存中也是占个字节(32个比特位)。二进制表示如下:
我们先了解计算机中整数的三种
2
进制表示方法,即原码、反码和补码。
三种表示方法均有
符号位
和
数值位
两部分,符号位都是用
0
表示
“
正
”
,用
1
表示
“
负
”
,而
数值位
1、正数的原、反、补码都相同。
2、负整数的三种表示方法各不相同。
我们不难发现在整型数据a中,原码,反码,补码都是相同的。b中的原码,反码,补码均不相同。
那么原码,反码,补码我们是怎么得到的呢?
原码:直接将数值按照正负数的形式翻译成二进制就可以得到原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。
我们以-1为例了解以下原码到补码的步骤(一种方式)、补码到反码的步骤(两种方式)。

注意:整型数据在存储中存放的是补码。
2、大小端
是什么?
大端(存储)模式:是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址 中;
小端(存储)模式:是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地 址中。
3、浮点型在内存中的存储
浮点数在内存中遵循什么样的规则呢?
根据国际标准
IEEE
(电气和电子工程协会)
754
,任意一个二进制浮点数
V
可以表示成下面的形式:
- (-1)^ S * M * 2 ^ E
- (-1)^ S 表示符号位,当S=0,V为正数;S=1,V为负数。
- M表示有效数字,大于等于1,小于2.
- 2 ^ E表示指数位。
浮点数的二进制表示方法
我们用v= 5.5解释 公式(-1)^ S * M * 2 ^ E
我们知道了浮点数的二进制表示形式,那么浮点数二进制又是怎么在内存中存储的呢?
IEEE 754
规定:
对于
32
位的浮点数,最高的
1
位S
,接着的
8
位是指数
E
,剩下的
23
位为有效数字
M
。
对于
64
位的浮点数,最高的
1
位是符号位S,接着的
11
位是指数
E
,剩下的
52
位为有效数字
M
。
如图:
IEEE 754
对有效数字
M
和指数
E
,还有一些特别规定。
前面说过,
1≤M<2
,也就是说,
M
可以写成
1.xxxxxx
的形式,其中
xxxxxx
表示小数部分。
IEEE 754
规定,在计算机内部保存
M
时,默认这个数的第一位总是
1
,因此可以被舍去,只保存后面的
xxxxxx
部分。比如保存
1.01
的时
候,只保存
01
,等到读取的时候,再把第一位的
1
加上去。这样做的目的,是节省
1
位有效数字。以
32
位
浮点数为例,留给
M
只有
23
位,
将第一位的
1
舍去以后,等于可以保存
24
位有效数字。
首先,
E
为一个无符号整数(
unsigned int
)
这意味着,如果
E
为
8
位,它的取值范围为
0~255
;如果
E
为
11
位,它的取值范围为
0~2047
。但是,我们
知道,科学计数法中的
E
是可以出
现负数的,所以
IEEE 754
规定,存入内存时
E
的真实值必须再加上一个中间数,对于
8
位的
E
,这个中间数
是
127
;对于
11
位的
E
,这个中间
数是
1023
。比如,
2^10
的
E
是
10
,所以保存成
32
位浮点数时,必须保存成
10+127=137
,即
10001001
。
然后,指数
E
从内存中取出还可以再分成三种情况:
E
不全为
0
或不全为
1
这时,浮点数就采用下面的规则表示,即指数
E
的计算值减去
127
(或
1023
),得到真实值,再将
有效数字
M
前加上第一位的
1
。
比如:
0.5
(
1/2
)的二进制形式为
0.1
,由于规定正数部分必须为
1
,即将小数点右移
1
位,则为
1.0*2^(-1)
,其阶码为
-1+127=126
,表示为
01111110
,而尾数
1.0
去掉整数部分为
0
,补齐
0
到
23
位
00000000000000000000000
,则其二进
制表示形式为
:
0 01111110 00000000000000000000000
E
全为
0
这时,浮点数的指数
E
等于
1-127
(或者
1-1023
)即为真实值,
有效数字
M
不再加上第一位的
1
,而是还原为
0.xxxxxx
的小数。这样做是为了表示
±0
,以及接近于
0
的很小的数字。
E
全为
1
这时,如果有效数字
M
全为
0
,表示
±
无穷大(正负取决于符号位
s
);
举例解释:
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n); //1
printf("*pFloat的值为:%f\n",*pFloat);//2
*pFloat = 9.0;
printf("num的值为:%d\n",n);//3
printf("*pFloat的值为:%f\n",*pFloat);//4
return 0;
}
表达式1,2,3,4分别为多少呢?
1,整数存整数打印,显然还是9.
2,由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:
V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146) 显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。
3,
9.0
==>
1001.0 ==
>
(
-
1
)
^01
.
0012
^3 ==
>
s
=
0
,
M
=
1.001
,
E
=
3
+
127
=
130
第一位的符号位
s=0
,有效数字
M
等于
001
后面再加
20
个
0
,凑满
23
位,指数
E
等于
3+127=130
,
即
10000010
。 所以,写成二进制形式,应该是s+E+M
,即:
0 10000010 001 0000 0000 0000 0000 0000
还原成十进制,1091567616
。
4,还是9.000000.
如有错误或不足,欢迎纠正。