升维的学习

本文探讨了升维的主要目的——解决欠拟合,通过创建新维度提高模型准确性。介绍了常见的升维手段,如维度相乘,并阐述了升维在处理非线性数据、增强模型拟合能力及提高预测精度方面的意义。最后,文中还提及了相关的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、升维的目的

升维的目的是为了去解决欠拟合的问题的,也就是为了提高模型的准确率为目的的,

二、升维的常见手段

最常见的手段就是将已知维度进行相乘来构建新的维度

例如:数据集有两个维度,分别为X1,X2,升维后有 X1,X2,等五个维度

三、升维的意义

1、为了使用线性模型去拟合非线性数据,更好的拟合目标变量

2、增加影响目标变量的因素,更好的拟合

3、提高模型的准确率。

### 前馈神经网络中的 在前馈神经网络中,是指通过增加特征空间度来捕捉更复杂的数据结构和模式。这一过程通常发生在全连接层之间,其中一层的输出被映射到更高度的空间作为下一层的输入。 #### 的概念 当数据从低空间转换至高空间时,模型能够学习更加复杂的表示形式。这种操作有助于解决线性不可分问题,并允许网络发现原始特征集中不易察觉的关系[^3]。具体来说,在图像分类任务中,早期卷积层提取简单边缘信息,而后续更深层次则负责构建这些基本组件之间的组合关系,形成抽象程度更高的语义描述子。 #### 实现方法 为了实现,可以调整全连接层(也称为密集层)中的节点数量。如果希望将输入向量\( \mathbf{x} \in R^{d_1} \) 映射成另一个具有更大度 \( d_2 > d_1 \) 的新向量,则只需设置该层拥有更多单元数即可: ```python import torch.nn as nn class IncreaseDimension(nn.Module): def __init__(self, input_dim=64, output_dim=128): # 设定初始度为64,目标度为128 super(IncreaseDimension, self).__init__() self.fc = nn.Linear(input_dim, output_dim) def forward(self, x): out = self.fc(x) return out ``` 上述代码定义了一个简单的PyTorch模块`IncreaseDimension`,它接受任意形状张量并将其最后一轴上的大小变换为目标尺寸。这里使用了线性变换(`nn.Linear`)来进行实际的参数化投影;当然也可以采用其他激活函数配合非线性变化以增强表达能力。 值得注意的是,虽然适当提某些隐藏层宽度可能有利于性能改进,但这并不意味着盲目堆砌大量神经元总是有益处——过拟合风险会随之增大,因此应当谨慎选择架构配置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

allen wy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值