使用CNN实现Mnist数据集手写数字字符识别

1.  加载数据集和数据预处理

    首先导入需要的包和第三方库;

import torch
import torch.nn as nn
import numpy as np
import torchvision
from torch.utils.data import DataLoader

    然后设置分批次训练数据的大小、训练次数和学习率;

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# 分批次训练,一批 64 个训练数据
BATCH_SIZE = 64
# 所有训练数据训练 3 次
EPOCHS = 50
# 学习率设置为 0.0001
LEARN_RATE = 1e-4

    加载数据集,将下载的文件转换成pytorch认识的tensor类型,并将图片的数值大小从0—255归一化到0—1;

# 加载数据集
train_data = torchvision.datasets.MNIST(
    root='./mnist',
    train=True,
    transform=torchvision.transforms.ToTensor() ,# 将下载的文件转换成pytorch认识的tensor类型,且将图片的数值大小从(0-255)归一化到(0-1)
    download=True
)
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
test_data = torchvision.datasets.MNIST(
    root='./mnist',
    train=False,
    transform=torchvision.transforms.ToTensor()  # 将下载的文件转换成pytorch认识的tensor类型,且将图片的数值大小从(0-255)归一化到(0-1)
)

test_loader = DataLoader(dataset=test_data, batch_size=1, shuffle=True)

2. 定义CNN网络结构

    定义CNN神经网络结构,定义了两个卷积层、一个全连接输出层,第一个卷积层输入通道为1,输出通道为16,卷积核大小为5,使用Relu激活函数和最大值池化。第二个卷积层输入通道为16,输出通道为32,卷积核大小为5,使用Relu激活函数和最大值池化。全连接层,输入大小为32*7*7,输出大小为10,并定义向前传播的方法。

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        # 卷积层1:输入通道为 1,输出通道为 16,卷积核大小 为 5
        # 使用 Relu 激活函数
        # 使用最大值池化
        self.conv1 = nn.Sequential(
            nn.Conv2d(
                in_channels=1,
                out_channels=16,
                kernel_size=5,
                stride=1,
                padding=2
            ),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2)
        )
        # 卷积层2:输入通道为 16,输出通道为 32,卷积核大小 为 5
        # 使用 Relu 激活函数
        # 使用最大值池化
        self.conv2 = nn.Sequential(
            nn.Conv2d(
                in_channels=16,
                out_channels=32,
                kernel_size=5,
                stride=1,
                padding=2
            ),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),
        )
        # 输出层,全连接层,输入大小 32 * 7 * 7, 输出大小 10
        self.layer_out = nn.Linear(32 * 7 * 7, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.size(0), -1)
        self.out = self.layer_out(x)
        return self.out

    使用CNN模型在GPU上进行训练,使用交叉熵损失函数,并使用Adam优化器进行优化。

# 实例化CNN,并将模型放在 GPU 上训练
model = CNN().to(device)
# 使用交叉熵损失,同样,将损失函数放在 GPU 上
loss_fn = nn.CrossEntropyLoss().to(device)
# 使用 Adam 优化器
optimizer = torch.optim.Adam(model.parameters(), lr=LEARN_RATE)

    加载数据集并调用模型进行训练,计算并输出损失值。在每一次循环之前,将梯度清零,进行反向传播调整权重,梯度下降来求解损失函数的最小值。此处设置batch_size64,所以每次训练共有938批次。

for epoch in range(EPOCHS):
    # 加载训练数据
    for step, data in enumerate(train_loader):
        x, y = data
        x, y = x.to(device), y.to(device)
        # 调用模型预测
        output = model(x).to(device)
        # 计算损失值
        loss = loss_fn(output, y.long())
        # 输出看一下损失变化
        print(f'EPOCH({epoch})  step({step})  loss = {loss.item()}')
        # 每一次循环之前,将梯度清零
        optimizer.zero_grad()
        # 反向传播
        loss.backward()
        # 梯度下降
        optimizer.step()

    使用模型测试数据,对10000张测试集图像进行预测输出,得到10个输出值,即为该图片为每个数字的概率,取最大概率的作为预测值,将其与真实值进行比较,预测准确则sum+1,最后计算并输出预测准确率。

sum = 0
# test:
for i, data in enumerate(test_loader):
    x, y = data
    x, y = x.to(device), y.to(device)
    # 得到模型预测输出,10个输出,即该图片为每个数字的概率
    res = model(x)
    # 最大概率的就为预测值
    r = torch.argmax(res)
    l = y.item()
    sum += 1 if r == l else 0
    print(f'test({i})     CNN:{r} -- label:{l}')

print('accuracy:', sum / 10000)

    训练模型的输出结果如下:

    对测试集进行测试的输出结果如下:

 

 

 

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奇幻小说家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值