第二型线面积分(习题部分)

这篇博客探讨了如何利用第一型和第二型曲线积分以及第二型曲面积分的知识来解决复杂的数学问题。通过格林公式将二重积分转化为曲线积分,简化了计算过程。文章举例说明如何利用曲线方程的特性简化被积表达式,并介绍了如何应用高斯公式求解曲面积分。此外,还强调了代数恒等关系和对称性的运用,以及在计算中立体几何和空间想象的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录​​​​​​​

第一型曲线积分

第二型曲线积分

第二型曲面积分


  • 第一型曲线积分

用二型积分的知识求面积,想到格林公式,从右往左用,将表示面积的二重积分转化为第二型曲线积分即可。

所以我们选取x = a\cos t^3, y = a \sin t^3 ,正向为积分路径C,选取被积表达式中的Q=x, P=-y即可,由格林公式得

 

                ​​​​​​​        ​​​​​​​        ​​​​​​​         

 分析:

这两道题目都有一个共同点技巧,就是巧妙地利用已知的积分曲线方程,去简化被积表达式。

第一个题,给出的圆周方程与被积表达式存在代数恒等关系,可以利用平方将被积表达式转化为只含有a的常数式子,提到积分号外部,计算的其实就是空间圆周的周长。

计算周长,需要圆的半径,此时用立体几何知识,求出圆心到平面的距离,勾股定理求出来。

解:

第二个题,由于曲线方程具有对等性,x、y、z三者地位相同,就向着平方和的形式转化。 

  • 第二型曲线积分

 

去年考题,比较基础 

首先计算偏导数之差

 虽然不简洁,但是注意这个结果是转化后的二重积分的被积表达式,利用对称性知道这个结果为零,因此考虑使用格林公式。

 

利用两者关系,关键是求出正确的方向向量的方向余弦。方向向量的方向要与曲线的方向一致。

  • 第二型曲面积分

画出大致图形,利用高斯公式。 

 首先需要求出曲面方程,注意技巧,需要记忆公式,绕着哪个轴旋转,哪个轴对应的变量就不变,用另外两个变量的平方和的平方根代替另一个变量。

 剩下的就是利用高斯公式了。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

midLakePavilion

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值