目录
-
第一型曲线积分
用二型积分的知识求面积,想到格林公式,从右往左用,将表示面积的二重积分转化为第二型曲线积分即可。
所以我们选取 ,正向为积分路径C,选取被积表达式中的Q=x, P=-y即可,由格林公式得
分析:
这两道题目都有一个共同点技巧,就是巧妙地利用已知的积分曲线方程,去简化被积表达式。
第一个题,给出的圆周方程与被积表达式存在代数恒等关系,可以利用平方将被积表达式转化为只含有a的常数式子,提到积分号外部,计算的其实就是空间圆周的周长。
计算周长,需要圆的半径,此时用立体几何知识,求出圆心到平面的距离,勾股定理求出来。
解:
第二个题,由于曲线方程具有对等性,x、y、z三者地位相同,就向着平方和的形式转化。
-
第二型曲线积分
去年考题,比较基础
首先计算偏导数之差
虽然不简洁,但是注意这个结果是转化后的二重积分的被积表达式,利用对称性知道这个结果为零,因此考虑使用格林公式。
利用两者关系,关键是求出正确的方向向量的方向余弦。方向向量的方向要与曲线的方向一致。
-
第二型曲面积分
画出大致图形,利用高斯公式。
首先需要求出曲面方程,注意技巧,需要记忆公式,绕着哪个轴旋转,哪个轴对应的变量就不变,用另外两个变量的平方和的平方根代替另一个变量。
剩下的就是利用高斯公式了。