无穷级数(2)

在无穷级数(1)中,我们学习的都是数项级数,它的每一项都是一个确定的实数;今天我们开始学习函数项级数,它的每一项都是带有变量的函数;函数项级数中我们会着重研究两类级数:幂级数(多项式函数的逼近)和傅立叶级数(三角函数的周期性)。

主要内容

一、初识函数项级数

二、一致收敛

三、幂级数

知识点4:求收敛域(收敛半径、收敛区间)

 知识点5:间接展开式的求法


一、初识函数项级数

  • 何为函数项级数

形如

\sum_{n=1}^{\infty }u_{n}(x) = u_{1}(x) + u_{2}(x) + ... + u_{n}(x) + ...

  • 几个概念

收敛点

选取一个具体的数a,如果函数项级数在a处的数项级数

\sum_{n=1}^{\infty }u_{n}(a) = u_{1}(a) + u_{2}(a) + ... + u_{n}(a) + ...

收敛,那么a为函数项级数的一个收敛点

收敛域

所有收敛点构成的集合,为收敛域。

发散点、发散域

反之

余和

简单点说,余和就是级数所有项的和减去前n项和(部分和)。

  • 求函数项级数的收敛域

基本方法,将函数项级数中的x看作参数,利用数项级数的知识,用比值法、根值法等方法,得到一个不等式,解出该不等式,得到的结果即为(不考虑端点)收敛域;然后单独考虑端点处的敛散性即可。

关于函数项级数收敛域的求法,后面会以幂级数和傅里叶级数为例,介绍更特殊的方法。 

二、一致收敛

  • 何为一致收敛

  • 几何意义

  • 分析性质

1. 函数项级数和函数的连续性

 2. 函数项级数可逐项积分

也即

\int_{x_{0}}^{x}\sum_{n=1}^{\infty }u_{n}(x)dx = \sum_{n=1}^{\infty }\int_{x_{0}}^{x}u_{n}(x)dx

3. 函数项级数可逐项微分

 

(\sum_{n=1}^{\infty } u_{n}(x))' = \sum_{n=1}^{\infty }u'_{n}(x)

三、幂级数

  • 何为幂级数

注意(1)式为幂级数的标准形式。 

  • 阿贝尔引理

 对定理的理解:

也就是说,对于一个标准形式的幂级数而言,因为幂级数在全体实数域上都有定义,我们可以不断地取点讨论,最后可能找到一个点r, 在(-r, r)区间(暂时不考虑端点)内都收敛,其他的点都发散。

定理的推论:

在幂级数中,R为收敛半径,

(-R, R)为收敛区间,

考虑端点处的数项级数敛散性后,收敛区间加上端点后的结果就是收敛域。

知识点4:求收敛域(收敛半径、收敛区间)

这个定理可以快速用来求幂级数的收敛半径,本质上是之前学过的比值法(根值法)。

大致步骤:

  1. 审视给出的幂级数是否是标准形式,不是则需要变换为标准形式;
  2. 套用公式,求出收敛半径,得出收敛区间;
  3. 单独考虑端点处的数项级数的敛散性(判断任意项级数)
  4. 合并写出最终的收敛域

求下列幂级数的收敛半径和收敛域。

(1) \sum_{n=0}^{\infty }\frac{x^n}{n!}

(2)\sum_{n=1}^{\infty }\frac{n!}{n^n}x^{2n}

(3) \sum_{n=1}^{\infty }\frac{(x+1)^n}{n\cdot 3^n}

(4)\sum_{n=1}^{\infty }(-1)^n\frac{x^{2n+1}}{2n+1}

(5)\sum_{n=1}^{\infty }x^{n^{2}}

解:

(1)

首先,它是一个标准形式的幂级数,咱们可以直接套用公式求收敛半径,此时就需要找准幂级数的“系数"(公式中不需要x)。

由于这里求出的收敛半径为无穷大,代表这个级数在实数域内处处收敛,收敛域就是全体实数域。

(2)

很明显需要将给的幂级数化成标准形式,通常用换元可以做到。

接下来就求这个新级数的收敛半径:

然后单独考虑区间端点处,由于此处已经换元,需要还原到原来的x的取值情况:

接下来就是判断一个数项级数的敛散性的问题:

综合得出结果:

(3)

与(2)处理步骤类似,

(4)

直接换元转化为标准形式的幂级数很困难,所以我们需要换一种思路考虑。函数项级数也可以看做数项级数——当我们将x看做一个常数时。数项级数有一个性质,是说系数可以自由进出求和符号(不改变敛散性),因此我们可以将一个x提到求和符号之外,在做考虑。

x每取一个具体的数,原函数项级数就是一个数项级数,因此这个操作时可以的

 接下来就是换元、计算极限了。

(5)

仍然不好换元,如果不是标准形式,我们是无法直接使用公式的。但是求收敛半径的公式本质上是由比值法、根值法推导来的,是比值法、根值法的一种特殊形式(级数是幂级数的标准形式),所以我们可以追根溯源,回到最开始求函数项级数收敛域的一般方法:使用比值法、根值法。

  • 幂级数的运算

幂级数的一致收敛

也就是说,对于幂级数而言,在收敛域内可以逐项积分、逐项微分。

并且,逐项积分、逐项微分后的收敛半径不变,但是收敛域可能会变化。

所谓幂级数的运算,就是将两个幂级数作加、减、乘、除四则运算,或者涉及求导、积分等运算,前者直接运算即可,后者可能会用到一致收敛的性质(逐项微分、逐项积分)。

 

 (1)不难发现 \frac{1}{x - 1} = (ln(1-x))',前者的幂级数已知,所以要求后者的幂级数,就需要对前者的幂级数逐项积分。

 同理,此时就需要对已知的展开式逐项微分:

求下列级数的收敛域:

\sum_{n=1}^{\infty }(-1)^n\frac{x^{2n+1}}{2n+1}

 我们知道对幂函数求导、求积分都可以使次数变化1,这里2n+1的奇数次幂不好处理,如果它是偶次幂就好处理了,可以利用幂级数的运算,先将这个级数的逐项微分(不改变收敛半径),然后再求收敛半径,讨论端点处敛散性。

  •  函数的幂级数展开

这一部分主要研究如何将一个函数,在某个区间上写成(展开)幂级数的形式,实现了多项式逼近,与之前的泰勒公式有紧密联系。

回忆泰勒公式,要求f(x)在x0某领域内有n+1阶导数:

泰勒级数与麦克劳林级数

泰勒级数就是我们想要展开的幂级数的形式,但是即便如此,我们需要考虑两个问题

  1. 诱导出的泰勒级数是否收敛;
  2. 即便它收敛,它是不是收敛于原来的函数f(x);

因此我们还需要解决这两个问题:

第一个问题容易解决,这个泰勒级数本身的收敛半径的求法就用之前的方法;

第二个问题,我们需要考虑拉格朗日型余项,用到下面的定理:

 

(直接)展开式的求法x_{0}

 步骤:

  1. 求出函数f(x)的各阶导数;
  2. 计算各阶导数(包括原函数)在给定点 x_{0} 处的值;
  3. 代入公式写出泰勒级数(幂级数);
  4. 求出收敛域;
  5. 在收敛域内求出幂级数的展开区间(即在何区间内收敛到f(x))

将  \sin x  在x = \frac{\pi }{\4} 处展成幂级数。

解:

在a处展成幂级数,结果的形式就都是(x-a)的幂的和式;因此作出换元,先表示成sint在t=0处的麦克劳林级数形式(这一步就可以直接套用展开式),最后再将所有的t换成x-a,结果自然正确。

 常用的函数的幂级数展开式有

 

这些展开式可以直接使用——将会作为间接展开时的使用公式直接套用。

 知识点5:间接展开式的求法

        考虑函数的幂级数展开,更多的情况是间接展开,因为能直接求导并且求导结果不太复杂的函数很少,大多数都很复杂,运算起来有很大障碍。

        函数的间接展开,就是通过换元以及求导、积分等幂级数的运算等预处理手段,将给的函数转化为一个可以直接幂级数展开的函数,这样就可以直接套公式了。

        函数间接展开后,仍需要写出收敛域,由于收敛半径不改变,只需要考虑端点值即可。

解:

利用已知的级数展开式

原来的f(x)是由已知的\frac{1}{1+x}积分而来,因此需要对已知的级数展开式逐项积分。

积分区间不变,仍然为(-1,1),只需考虑端点值处。

收敛域:(-1, 1]

将 \arctan x 展成x的幂级数。

解:

肯定需要间接展开了,注意到arctan x求导之后的式子可以直接套用已知展开式,那么对已知的展开式逐项积分即可。

 到此就已经将原函数展开成x的幂级数了,接下来还需要求收敛域。

将 \frac{x}{4-x^2} 展成x的幂级数。

解: 

首先预判我们会用到的展开式,此处无阶乘、无交错,多半会用到最简洁的\frac{1}{1-x}的展开式。

那么我们就需要做一下变形,向这个形式转化。

此处并没有逐项积分、逐项微分,仅仅用了一步代换,因此收敛域也不会变。

 例

展成幂级数。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

midLakePavilion

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值