凸优化第三章——凸优化问题

优化问题

优化问题的标准形式

m i n i m i z e f 0 ( x ) s u b j e c t   t o f i ( x ) ≤ 0 , i = 1 , . . . , m h i ( x ) = 0 , i = 1 , . . . , p \begin{align*} minimize &&& f_0(x)\\ subject\ to &&&f_i(x)\le0,i=1,...,m\\ &&&h_i(x)=0,i=1,...,p \end{align*} minimizesubject tof0(x)fi(x)0,i=1,...,mhi(x)=0,i=1,...,p

最优值 p ∗ p^* p定义为:
p ∗ = i n f { f 0 ( x ) ∣ f i ( x ) ≤ 0 ,   i = 1 , . . . , m ,   h i ( x ) = 0 ,   i = 1 , . . . , p } \begin{align*} p^*=inf\{f_0(x)|f_i(x)\le 0,\ i=1,...,m,\ h_i(x)=0,\ i=1,...,p\} \end{align*} p=inf{f0(x)fi(x)0, i=1,...,m, hi(x)=0, i=1,...,p}
如果问题不可行, p ∗ = ∞ p^*=\infin p=;如果有无界解,则 p ∗ = − ∞ p^*=-\infin p=

定义域记为 D D D D = ⋂ i = 1 m d o m   f i   ∩   ⋂ i = 1 p   d o m   h i D=\bigcap_{i=1}^m dom\ f_i\ \cap\ \bigcap_{i=1}^p\ dom\ h_i D=i=1mdom fi  i=1p dom hi

局部最优解

如果存在 R > 0 R>0 R>0,使得 x x x是关于 z z z的优化问题
m i n i m i z e f 0 ( z ) s u b j e c t   t o f i ( z ) ≤ 0 , i = 1 , . . . , m h i ( z ) = 0 , i = 1 , . . . , p ∥ z − x ∥ 2 ≤ R \begin{align*} minimize &&& f_0(z)\\ subject\ to &&&f_i(z)\le0,i=1,...,m\\ &&&h_i(z)=0,i=1,...,p\\ &&&\parallel z-x\parallel_2\le R \end{align*} minimizesubject tof0(z)fi(z)0,i=1,...,mhi(z)=0,i=1,...,pzx2R
的最优解,则称 x x x是问题
m i n i m i z e f 0 ( x ) s u b j e c t   t o f i ( x ) ≤ 0 , i = 1 , . . . , m h i ( x ) = 0 , i = 1 , . . . , p \begin{align*} minimize &&& f_0(x)\\ subject\ to &&&f_i(x)\le0,i=1,...,m\\ &&&h_i(x)=0,i=1,...,p \end{align*} minimizesubject tof0(x)fi(x)0,i=1,...,mhi(x)=0,i=1,...,p
的一个局部最优解(locally optimal points)。

x x x是以上问题的最优解 ⟺ \Longleftrightarrow 存在 R > 0 R>0 R>0,使得 f 0 ( x ) = i n f { f 0 ( z ) ∣ f i ( z ) ≤ 0 , i = 1 , . . . m , h i ( z ) = 0 , i = 1 , . . . , p , ∥ z − x ∥ 2 ≤ R } f_0(x)=inf\{f_0(z)|f_i(z)\le0,i = 1,...m,h_i(z)=0,i=1,...,p,\parallel z-x\parallel_2\le R\} f0(x)=inf{f0(z)fi(z)0,i=1,...m,hi(z)=0,i=1,...,p,zx2R}

可行性问题

令目标函数为0,那么该问题的最优函数值要么为0(可行),要么为 ∞ \infin (不可行)。称这类问题为可行性问题,可以写作:
m i n i m i z e 0 s u b j e c t   t o f i ( x ) ≤ 0 , i = 1 , . . . , m h i ( x ) = 0 , i = 1 , . . . , p \begin{align*} &minimize && 0\\ &subject\ to &&f_i(x)\le0,i=1,...,m\\ &&&h_i(x)=0,i=1,...,p \end{align*} minimizesubject to0fi(x)0,i=1,...,mhi(x)=0,i=1,...,p
或者
f i n d x s u b j e c t   t o f i ( x ) ≤ 0 , i = 1 , . . . , m h i ( x ) = 0 , i = 1 , . . . , p \begin{align*} &find && x\\ &subject\ to &&f_i(x)\le0,i=1,...,m\\ &&&h_i(x)=0,i=1,...,p \end{align*} findsubject toxfi(x)0,i=1,...,mhi(x)=0,i=1,...,p

等价问题

  1. 变量变换

  2. 消除等式约束

    x = ϕ ( z ) x=\phi(z) x=ϕ(z),函数 ϕ \phi ϕ满足: h i ( x ) = 0 ⟺ h_i(x)=0\Longleftrightarrow hi(x)=0存在 z ∈ d o m   ϕ z\in dom\ \phi zdom ϕ,使得 ϕ ( z ) = x \phi(z)=x ϕ(z)=x

    则问题

    m i n i m i z e f 0 ( ϕ ( z ) ) minimize\quad f_0(\phi(z)) minimizef0(ϕ(z))

    s u b j e c t   t o f i ( ϕ ( z ) ) ≤ 0 , i = 1 , . . . , m subject\ to\quad f_i(\phi(z))\le 0,i=1,...,m subject tofi(ϕ(z))0,i=1,...,m

    与原问题等价。

凸优化问题

凸优化问题的标准形式

m i n i m i z e f 0 ( x ) s u b j e c t   t o f i ( x ) ≤ 0 , i = 1 , . . . , m h i ( x ) = 0 , i = 1 , . . . , p \begin{align*} minimize &&& f_0(x)\\ subject\ to &&&f_i(x)\le0,i=1,...,m\\ &&&h_i(x)=0,i=1,...,p \end{align*} minimizesubject tof0(x)fi(x)0,i=1,...,mhi(x)=0,i=1,...,p

  • f 0 , f 1 , . . . , f m f_0,f_1,...,f_m f0,f1,...,fm是凸的

  • 等式约束 h i ( x ) = a i T x − b i h_i(x)=a_i^Tx-b_i hi(x)=aiTxbi必须是仿射(线性)的,通常写成 A x = b Ax=b Ax=b

注:如果 f 0 ( x ) f_0(x) f0(x)是拟凸函数, f 1 , . . . , f m f_1,...,f_m f1,...,fm是凸的且等式约束是仿射的,那么该问题是拟凸优化问题

凸优化问题的性质

  • 凸优化问题的可行域是凸集(凸函数的任意下水平集是凸集,超平面是凸集,凸集的交集是凸集)
  • 局部最优解一定是全局最优解之一(求证)。(但对于拟凸优化问题,这一性质不一定成立)

可微函数 f 0 f_0 f0的最优性准则

凸优化问题的目标函数 f 0 f_0 f0是可微的,其可行域为 X X X。那么:
x x x是最优解 ⟺ \Longleftrightarrow x ∈ X x\in X xX并且对于任意 y ∈ X y\in X yX ∇ f 0 ( x ) T ( y − x ) ≥ 0 \nabla f_0(x)^T(y-x)\ge 0 f0(x)T(yx)0

(求证)

  • 无约束问题

    如果m=p=0,则称这样的优化问题为无约束问题。(即使目标函数有隐含约束,如log x隐含x>0的条件,但只要没有约束条件,就是无约束问题)

    对于无约束的凸优化问题,设目标函数 f 0 f_0 f0是可微凸函数,则

    x x x是最优解 ⟺ x ∈ X   a n d   ∇ f ( x ) = 0 \Longleftrightarrow x\in X\ and\ \nabla f(x)=0 xX and f(x)=0

  • 只含等式约束的问题

    m i n i m i z e f 0 ( x ) minimize \quad f_0(x) minimizef0(x)

    s u b j e c t   t o A x = b subject\ to\quad Ax=b subject toAx=b

    拉格朗日乘数法

  • 非负象限中的极小化

    minimization over nonnegative orthant
    m i n i m i z e f 0 ( x ) s u b j e c t   t o x ⪰ 0 \begin{align*} minimize &&& f_0(x)\\ subject\ to &&&x\succeq0 \end{align*} minimizesubject tof0(x)x0
    设目标函数 f 0 f_0 f0是可微凸函数,则

    x x x是最优解 ⟺ x ⪰ 0 , ∇ f 0 ( x ) ⪰ 0 , x i ( ∇ f 0 ( x ) ) i = 0 , i = 1 , . . . , n \Longleftrightarrow x\succeq 0,\nabla f_0(x)\succeq0,x_i(\nabla f_0(x))_i=0,i=1,...,n x0,f0(x)0,xi(f0(x))i=0,i=1,...,n

    证明:

    该问题的最优性条件为:
    x ⪰ 0 , ∇ f 0 ( x ) T ( y − x ) ≥ 0 , ∀ y ⪰ 0 \begin{align*} x\succeq 0,&&\nabla f_0(x)^T(y-x)\ge 0,\forall y\succeq0 \end{align*} x0,f0(x)T(yx)0,y0
    ∇ f 0 ( x ) T ( y − x ) ≥ 0 \nabla f_0(x)^T(y-x)\ge 0 f0(x)T(yx)0是关于 y y y的线性函数,只有当 ∇ f 0 ( x ) ⪰ 0 \nabla f_0(x)\succeq0 f0(x)0时才有下界 − ∇ f 0 ( x ) T x -\nabla f_0(x)^Tx f0(x)Tx,因此该条件可以简化为 ∇ f 0 ( x ) ⪰ 0 , − ∇ f 0 ( x ) T x ≥ 0 \nabla f_0(x)\succeq0,-\nabla f_0(x)^Tx\ge 0 f0(x)0,f0(x)Tx0。又因为 x ⪰ 0 x\succeq0 x0,所以 ∇ f 0 ( x ) T x = 0 \nabla f_0(x)^Tx= 0 f0(x)Tx=0,即 ( ∇ f 0 ( x ) ) i T x i = 0 , i = 1 , . . . , n (\nabla f_0(x))_i^Tx_i=0,i=1,...,n (f0(x))iTxi=0,i=1,...,n

    因此最优性条件为:
    x ⪰ 0 ∇ f 0 ( x ) ⪰ 0 ( ∇ f 0 ( x ) ) i T x i = 0 , i = 1 , . . . , n \begin{align*} &x\succeq0\\ &\nabla f_0(x)\succeq0\\ &(\nabla f_0(x))_i^Tx_i=0,i=1,...,n \end{align*} x0f0(x)0(f0(x))iTxi=0,i=1,...,n

等价的凸问题

  • 消除等式约束和引入等式约束

    由于凸优化问题的等式约束必须是线性函数,因此有

    m i n i m i z e f 0 ( A 0 x + b 0 ) minimize \quad f_0(A_0x+b_0) minimizef0(A0x+b0)

    s u b j e c t   t o f i ( A i x + b ) ≤ 0 , i = 1 , . . . , m subject\ to\quad f_i(A_ix+b)\le0,i=1,...,m subject tofi(Aix+b)0,i=1,...,m

    等价于(凸性不变)

    m i n i m i z e f 0 ( y 0 ) minimize \quad f_0(y_0) minimizef0(y0)

    s u b j e c t   t o f i ( y i ) ≤ 0 , y i = A i x + b i , i = 0 , 1 , . . . , m subject\ to\quad f_i(y_i)\le 0,y_i=A_ix+b_i,i=0,1,...,m subject tofi(yi)0,yi=Aix+bi,i=0,1,...,m

  • 松弛变量

  • 上镜图问题形式

    m i n i m i z e f 0 ( x ) minimize \quad f_0(x) minimizef0(x)

    s u b j e c t   t o f i ( x ) ≤ 0 , i = 1 , . . . , m subject\ to\quad f_i(x)\le0,i=1,...,m subject tofi(x)0,i=1,...,m

    a i T x = b i , i = 1 , . . . , p \quad\quad\quad\quad\quad\quad a_i^Tx=b_i,i=1,...,p aiTx=bi,i=1,...,p

    的上镜图形式为:

    m i n i m i z e ( o v e r   x , t ) t minimize(over\ x,t) \quad t minimize(over x,t)t

    s u b j e c t   t o f 0 ( x ) ≤ t subject\ to\quad f_0(x)\le t subject tof0(x)t

    f i ( x ) ≤ 0 , i = 1 , . . . , m \quad\quad\quad\quad\quad\quad f_i(x)\le 0,i=1,...,m fi(x)0,i=1,...,m

    a i T x = b i , i = 1 , . . . , p \quad\quad\quad\quad\quad\quad a_i^Tx=b_i,i=1,...,p aiTx=bi,i=1,...,p

    依然是凸优化问题

  • 极小化部分变量

    由于KaTeX parse error: Undefined control sequence: \symbf at position 1: \̲s̲y̲m̲b̲f̲{\underset{x,y}…,也就是说优化顺序无关紧要。所以有:

    m i n i m i z e f 0 ( x 1 , x 2 ) minimize\quad f_0(x_1,x_2) minimizef0(x1,x2)

    s u b j e c t   t o f i ( x 1 ) ≤ 0 , i = 1 , . . . , m subject\ to\quad f_i(x_1)\le 0,i=1,...,m subject tofi(x1)0,i=1,...,m

    等价于

    m i n i m i z e f ~ 0 ( x 1 ) minimize\quad \widetilde{f}_0(x_1) minimizef 0(x1)

    s u b j e c t   t o f i ( x 1 ) ≤ 0 , i = 1 , . . . , m subject\ to\quad f_i(x_1)\le 0,i=1,...,m subject tofi(x1)0,i=1,...,m

    其中KaTeX parse error: Undefined control sequence: \symbf at position 22: …ilde{f}_0(x_1)=\̲s̲y̲m̲b̲f̲{\underset{x_2}…

    f ~ 0 ( x 1 ) \widetilde{f}_0(x_1) f 0(x1)依然是凸函数(部分极小化是保凸运算)。

拟凸优化

  • 拟凸优化问题的局部最优解未必是全局最优解
  • x x x是拟凸优化问题的全局最优解的充分条件: x ∈ X x\in X xX并且 ∇ f ( x ) T ( y − x ) > 0 , ∀ y ∈ X / { x } \nabla f(x)^T(y-x)>0,\forall y\in X/ \{x\} f(x)T(yx)>0,yX/{x}

线性规划问题(LP)

线性规划(Linear Programming)的一般形式
m i n i m i z e c T x ( + d ) s u b j e c t   t o G x ⪯ h A x = b \begin{align*} minimize &&& c^Tx(+d)\\ subject\ to &&&Gx\preceq h\\ &&&Ax=b \end{align*} minimizesubject tocTx(+d)GxhAx=b

线性规划问题就是 f i f_i fi都是线性函数的特殊凸优化问题,可以用凸优化的方法求解。

线性规划的标准形式
m i n i m i z e c T x s u b j e c t   t o A x = b x ⪰ 0 \begin{align*} minimize &&& c^Tx\\ subject\ to &&&Ax=b\\ &&&x\succeq0 \end{align*} minimizesubject tocTxAx=bx0


m i n i m i z e c T x s u b j e c t   t o A x = b \begin{align*} minimize &&& c^Tx\\ subject\ to &&&Ax=b\\ \end{align*} minimizesubject tocTxAx=b

将线性规划转换为标准形式

  1. 引入松弛变量
  2. 将无约束变量 x x x表示为 x = x + + x − , x + , x − ≥ 0 x=x^++x^-,x^+,x^-\ge 0 x=x++x,x+,x0

线性分式规划

在多面体上极小化仿射函数之比的问题称为线性分式规划:
m i n i m i z e f 0 ( x ) s u b j e c t   t o G x ⪯ h A x = b \begin{align*} minimize &&& f_0(x)\\ subject\ to &&&Gx\preceq h\\ &&&Ax=b\\ \end{align*} minimizesubject tof0(x)GxhAx=b
其中KaTeX parse error: Undefined control sequence: \symbf at position 30: …^Tx+d}{e^Tx+f},\̲s̲y̲m̲b̲f̲{dom}\ f_0=\{x|… f 0 ( x ) f_0(x) f0(x)是拟凸的(事实上是拟线性的)且所有约束都是仿射的,因此线性分时问题是一个拟凸优化问题

转换为线性规划
m i n i m i z e c T y + d z s u b j e c t   t o e T y + f z = 1 G y − h z ⪯ 0 A y − b z = 0 z ≥ 0 \begin{align*} minimize &&& c^Ty+dz\\ subject\ to &&&e^Ty+fz=1\\ &&&Gy-hz\preceq0\\ &&&Ay-bz=0\\ &&&z\ge 0 \end{align*} minimizesubject tocTy+dzeTy+fz=1Gyhz0Aybz=0z0
y = x e T x + f , z = 1 e T x + f y=\frac{x}{e^Tx+f},z=\frac{1}{e^Tx+f} y=eTx+fx,z=eTx+f1可以说明等价性。证明方法:对于第一个问题中任意一个可行解,问题二中都有与之相对的可行解使它们的目标函数值相同;反之亦同。

广义线性分式规划
m i n i m i z e f 0 ( x ) s u b j e c t   t o G x ⪯ h A x = b \begin{align*} minimize &&& f_0(x)\\ subject\ to &&&Gx\preceq h\\ &&&Ax=b\\ \end{align*} minimizesubject tof0(x)GxhAx=b
其中KaTeX parse error: Undefined control sequence: \symbf at position 60: …_i}{e_i^T+f_i},\̲s̲y̲m̲b̲f̲{dom}f_0=\{x|e_….

目标函数是拟凸的。

二次优化问题(QP)

Quadratic Program
m i n i m i z e ( 1 / 2 ) x T P x + q T x + r s u b j e c t   t o G x ⪯ h A x = b \begin{align*} minimize &&& (1/2)x^TPx+q^Tx+r\\ subject\ to &&&Gx\preceq h\\ &&&Ax=b\\ \end{align*} minimizesubject to(1/2)xTPx+qTx+rGxhAx=b
其中 P ∈ S + n P\in S^n_+ PS+n(半正定矩阵集),因此目标函数是凸二次型,又由于约束都是仿射的,因此QP是凸优化问题

LP ⊆ \sube QP。

二次约束二次规划(QCQP)

Quadratically Constrained Quadratic Program
m i n i m i z e ( 1 / 2 ) x T P 0 x + q T x + r s u b j e c t   t o ( 1 / 2 ) x T P i x + q T x + r ≤ 0 , i = 1 , . . . , m A x = b \begin{align*} minimize &&& (1/2)x^TP_0x+q^Tx+r\\ subject\ to &&&(1/2)x^TP_ix+q^Tx+r\le 0,i=1,...,m\\ &&&Ax=b\\ \end{align*} minimizesubject to(1/2)xTP0x+qTx+r(1/2)xTPix+qTx+r0,i=1,...,mAx=b
其中 P i ∈ S + n , i = 0 , 1 , . . . , m P_i\in S^n_+,i=0,1,...,m PiS+n,i=0,1,...,m

LP ⊆ \sube QP ⊆ \sube QCQP。

二阶锥规划(SCOP)

Second-Order Cone Program
m i n i m i z e f T x s u b j e c t   t o ∣ ∣ A i x + b i ∣ ∣ 2 ≤ c i T + d i , i = 1 , . . . , m F x = g \begin{align*} minimize&&&f^Tx\\ subject\ to&&&|| A_ix+b_i||_2\le c_i^T+d_i,i=1,...,m\\ &&&Fx=g \end{align*} minimizesubject tofTx∣∣Aix+bi2ciT+di,i=1,...,mFx=g
LP ⊆ \sube QP ⊆ \sube QCQP ⊆ \sube SCOP。

鲁棒线性优化

随机约束下的线性规划

几何规划

  • 18
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Naou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值