凸优化第二章——凸函数

凸函数

定义

定义:函数 f : R n → R f:R^n\rightarrow R f:RnR是凸函数 ⟺ \Longleftrightarrow d o m   f dom\ f dom f是凸集,且对于任意 x , y ∈ d o m   f x,y\in dom\ f x,ydom f和任意 0 ≤ θ ≤ 1 0\le\theta\le1 0θ1,有 f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x+(1-\theta)y)\le \theta f(x)+(1-\theta)f(y) f(θx+(1θ)y)θf(x)+(1θ)f(y)

注意:凸函数和凹函数的定义域都必须是凸集;若 f f f为凹函数,则 − f -f f为凸函数。

性质:函数是凸的,当且仅当其在与其定义域相交的任何直线上都是凸的。换言之,函数 f f f是凸的 ⟺ \Longleftrightarrow 对于任意 x ∈ d o m   f x\in dom\ f xdom f和任意向量 v v v,函数 g ( t ) = f ( x + v t ) , d o m   g = { t ∣ x + v t ∈ d o m   f } g(t)=f(x+vt),dom\ g=\{t|x+vt\in dom\ f\} g(t)=f(x+vt),dom g={tx+vtdom f}都是凸函数。(复合仿射映射)

扩展值延伸

如果 f f f是凸函数,则定义其扩展值延伸 f ~ \widetilde{f} f 为:
f ~ ( x ) = { f ( x )   , x ∈ d o m   f ∞   , x ∉ d o m   f \widetilde{f}(x)=\begin{cases} f(x)\ ,x\in dom\ f\\ \infin\ ,x\notin dom\ f \end{cases} f (x)={f(x) ,xdom f ,x/dom f
原函数是凸,则其扩展函数也是凸,反之亦然。

如果 f f f是凹函数,则定义其扩展值延伸 f ~ \widetilde{f} f 为:
f ~ ( x ) = { f ( x )   , x ∈ d o m   f − ∞   , x ∉ d o m   f \widetilde{f}(x)=\begin{cases} f(x)\ ,x\in dom\ f\\ -\infin\ ,x\notin dom\ f \end{cases} f (x)={f(x) ,xdom f ,x/dom f

原函数是凹,则其扩展函数也是凹,反之亦然。

一阶条件

假设 f f f可微(即其梯度 ∇ f \nabla f f在定义域内处处存在),则函数 f f f是凸函数 ⟺ \Longleftrightarrow d o m   f dom\ f dom f是凸集,且对于任意 x , y ∈ d o m   f x,y\in dom\ f x,ydom f,有 f ( y ) ≥ f ( x ) + ∇ f ( x ) T ( y − x ) f(y)\ge f(x)+\nabla f(x)^T(y-x) f(y)f(x)+f(x)T(yx)

(求证)

二阶条件

假设 f f f二阶可微(即其梯度 ∇ 2 f \nabla^2 f 2f在定义域内处处存在),则函数 f f f是凸函数 ⟺ \Longleftrightarrow d o m   f dom\ f dom f是凸集,且对于所有的 x ∈ d o m   f x\in dom\ f xdom f,有 ∇ 2 f ( x ) ⪰ 0 \nabla^2 f(x)\succeq0 2f(x)0(半正定)。

如果对于任意的 x ∈ d o m   f x\in dom\ f xdom f ∇ 2 f ( x ) ≻ 0 \nabla^2 f(x)\succ 0 2f(x)0,则 f f f是严格凸函数。反之不成立,比如 f ( x ) = x 4 f(x)=x^4 f(x)=x4,它是严格凸的,但在 x = 0 x=0 x=0处,二阶导数为0。

半正定的判别条件:所有主子式非负。

主子式:在n 阶行列式中,选取行号,再选取与行号相同的列号,则行数和列数都为i个的行列式即为n阶行列式的i阶主子式

(求证)

Jensen不等式

f f f是凸函数,则

  • f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x+(1-\theta)y)\le \theta f(x)+(1-\theta)f(y) f(θx+(1θ)y)θf(x)+(1θ)f(y) for all θ ∈ [ 0 , 1 ] \theta\in[0,1] θ[0,1]
  • f ( θ 1 x 1 + . . . + θ k x k ) ≤ θ 1 f ( x 1 ) + . . . + θ k f ( x k ) f(\theta_1 x_1+...+\theta_k x_k)\le \theta_1 f(x_1)+...+\theta_k f(x_k) f(θ1x1+...+θkxk)θ1f(x1)+...+θkf(xk) for all θ 1 , . . . , θ k ≥ 0 , θ 1 + . . . + θ k = 1 \theta_1,...,\theta_k\ge0,\theta_1+...+\theta_k=1 θ1,...,θk0,θ1+...+θk=1

f f f是凸函数, Z Z Z是随机变量且 P ( Z ∈ d o m   f ) = 1 P(Z\in dom\ f)=1 P(Zdom f)=1,则 f ( E Z ) ≤ E f ( Z ) f(EZ)\le Ef(Z) f(EZ)Ef(Z)

上镜图epigrapgh

定义:函数 f f f的上镜图 e p i   f = { ( x , t ) ∣ x ∈ d o m   f , f ( x ) ≤ t } epi\ f=\{(x,t)|x\in dom\ f,f(x)\le t\} epi f={(x,t)xdom f,f(x)t}

性质:函数 f f f是凸函数 ⟺ \Longleftrightarrow e p i   f epi\ f epi f是凸集
证明:

下水平集sublevel set

定义:函数 f f f α \alpha α下水平集为 C α = { x ∈ d o m   f ∣ f ( x ) ≤ α } C_\alpha=\{x\in dom\ f|f(x)\le \alpha\} Cα={xdom ff(x)α}

性质1:凸函数的任意 α \alpha α下水平集仍然是凸集,反之不一定成立;

性质2:凹函数的任意 α \alpha α上水平集仍然是凸集

保凸运算

证明 f f f是凸函数的主要方法

  • 定义
  • 上镜图
  • 一阶条件
  • 二阶条件
  • 保凸运算

保凸运算

  1. 非负加权求和

    • 凸(凹)函数的非负加权求和仍然是凸(凹)函数,即:若 f 1 , . . . f m f_1,...f_m f1,...fm是凸(凹)函数, w 1 , . . . , w m ≥ 0 w_1,...,w_m\ge0 w1,...,wm0,则 f = w 1 f 1 + . . . + w m f m f=w_1 f_1+...+w_mf_m f=w1f1+...+wmfm仍然是凸(凹)函数

    • 严格凸(凹)函数的非负、非全零的加权求和是严格凸(凹)函数

  2. 复合仿射映射

    • f f f是凸函数,则 g ( x ) = f ( A x + b ) , d o m   g = { x ∣ A x + b ∈ d o m   f } g(x)=f(Ax+b),dom\ g=\{x|Ax+b\in dom\ f\} g(x)=f(Ax+b),dom g={xAx+bdom f}也是凸函数;

    • f f f是凹函数,则 g ( x ) = f ( A x + b ) , d o m   g = { x ∣ A x + b ∈ d o m   f } g(x)=f(Ax+b),dom\ g=\{x|Ax+b\in dom\ f\} g(x)=f(Ax+b),dom g={xAx+bdom f}也是凹函数

  3. 逐点最大和逐点上确界

    • f 1 ( x ) , . . . , f m ( x ) f_1(x),...,f_m(x) f1(x),...,fm(x)是凸函数,则 f ( x ) = m a x { f 1 ( x ) , . . . , f m ( x ) } f(x)=max\{f_1(x),...,f_m(x)\} f(x)=max{f1(x),...,fm(x)}也是凸函数

    • 如果对于任意 y ∈ A y\in A yA,函数 f ( x , y ) f(x,y) f(x,y)关于 x x x都是凸的,那么函数 g ( x ) = s u p y ∈ A   f ( x , y ) g(x)=\underset{y\in A}{sup}\ f(x,y) g(x)=yAsup f(x,y)关于 x x x也是凸函数。此时函数 g g g的定义域为 d o m   g = { x ∣ ( x , y ) ∈ d o m   f   ∀ y ∈ A , s u p   f ( x , y ) < ∞ } dom\ g=\{x|(x,y)\in dom\ f\ \forall y\in A,sup\ f(x,y)<\infin\} dom g={x(x,y)dom f yA,sup f(x,y)<};

      类似地,一系列凹函数的逐点下确界仍然是凹函数

  4. 复合(充分不必要)

    给定函数 h : R k → R h:R^k\rightarrow R h:RkR g : R n → R k g:R^n\rightarrow R^k g:RnRk,定义复合函数 f = h ∘ g : R n → R f=h\circ g:R^n\rightarrow R f=hg:RnR f ( x ) = h ( g ( x ) ) , d o m   f = { x ∈ d o m   g ∣ g ( x ) ∈ d o m   h } f(x)=h(g(x)),dom\ f=\{x\in dom\ g|g(x)\in dom\ h\} f(x)=h(g(x)),dom f={xdom gg(x)dom h}

    记忆方法:假设 n = 1 n=1 n=1,于是 f ′ ′ ( x ) = h ′ ′ ( g ( x ) ) [ g ′ ( x ) ] 2 + h ′ ( g ( x ) ) g ′ ′ ( x ) f''(x)=h''(g(x))[g'(x)]^2+h'(g(x))g''(x) f′′(x)=h′′(g(x))[g(x)]2+h(g(x))g′′(x)

    • 如果 h h h是凸函数且 h ~ \tilde{h} h~单调增加, g g g是凸函数,则 f f f是凸函数;
    • 如果 h h h是凸函数且 h ~ \tilde{h} h~单调减少, g g g是凹函数,则 f f f是凸函数;
    • 如果 h h h是凹函数且 h ~ \tilde{h} h~单调增加, g g g是凹函数,则 f f f是凹函数;
    • 如果 h h h是凹函数且 h ~ \tilde{h} h~单调减少, g g g是凸函数,则 f f f是凹函数。

    矢量复合:

    image-20231128201549218

  5. 最小化

    f ( x , y ) f(x,y) f(x,y)关于 ( x , y ) (x,y) (x,y)是凸函数, C C C是凸集,则 g ( x ) = i n f y ∈ C   f ( x , y ) g(x)=\underset{y\in C}{inf}\ f(x,y) g(x)=yCinf f(x,y)是凸函数

  6. 透视函数

    给定函数 f : R n → R f:R^n\rightarrow R f:RnR,则 f f f的透视函数 g : R n + 1 → R g:R^{n+1}\rightarrow R g:Rn+1R定义为
    g ( x , t ) = t f ( x / t ) , d o m   g = { ( x , t ) ∣ x / t ∈ d o m   f , t > 0 } g(x,t)=tf(x/t),dom\ g=\{(x,t)|x/t\in dom\ f,t>0\} g(x,t)=tf(x/t),dom g={(x,t)x/tdom f,t>0}

    • 如果函数 f f f是凸(凹)函数,则其透视函数也是凸(凹)函数。(求证,提示:epi)

      证明: e p i   g epi \ g epi g e p i   f epi\ f epi f在透视函数 g ( x , t ) = x t , t > 0 g(x,t)=\frac{x}{t},t>0 g(x,t)=tx,t>0下的原像,因此也是凸集(凸集的保凸运算),因此g是凸函数。

拟凸函数/单峰函数

定义

  • 如果函数 f f f的定义域和所有下水平集都是凸集,那么 f f f是拟凸函数

  • 如果函数 − f -f f是拟凸函数,那么 f f f是拟凹函数

  • 如果函数 f f f既是拟凸函数又是拟凹函数(即 f f f的定义域和所有水平集 { x ∈ d o m   f ∣ f ( x ) = α } \{x\in dom\ f|f(x)=\alpha\} {xdom ff(x)=α}都是凸集),那么 f f f是拟线性函数

充要条件

  • 函数 f f f是拟凸函数 ⟺ \Longleftrightarrow d o m   f dom\ f dom f是凸集,且对于任意 x , y ∈ d o m   f x,y\in dom\ f x,ydom f即任意 0 ≤ θ ≤ 1 0\le \theta\le 1 0θ1,有 f ( θ x + ( 1 − θ ) y ) ≤ m a x { f ( x ) , f ( y ) } f(\theta x+(1-\theta)y)\le max\{f(x),f(y)\} f(θx+(1θ)y)max{f(x),f(y)}
  • 函数 f f f是拟凸函数 ⟺ \Longleftrightarrow 对于任意 x ∈ d o m   f x\in dom\ f xdom f和任意向量 v v v g ( t ) = f ( x + v t ) g(t)=f(x+vt) g(t)=f(x+vt)都是拟凸函数

性质

  • 凸函数一定是拟凸函数,反之不一定。

R上的拟凸函数

  • f : R → R f:R\rightarrow R f:RR是单调的,那么它是拟线性函数(既是拟凸也是拟凹)
  • f : R → R f:R\rightarrow R f:RR满足以下条件之一,那么它是拟凸的:
    • f f f单调(拟线性)
    • $f $先减后增

可微拟凸函数

  • 一阶条件(充要)

    f : R n → R f:R^n\rightarrow R f:RnR可微,则 f f f是拟凸函数 ⟺ \Longleftrightarrow d o m   f dom\ f dom f是凸集,且对于任意 x , y ∈ d o m   f x,y\in dom\ f x,ydom f f ( y ) ≤ f ( x ) ⟹ ∇ f ( x ) T ( y − x ) ≤ 0 f(y)\le f(x)\Longrightarrow\nabla f(x)^T(y-x)\le0 f(y)f(x)f(x)T(yx)0

  • 二阶条件(必要)

    f f f二阶可微,则 f f f是拟凸函数 ⟹ \Longrightarrow 对于任意 x ∈ d o m   f x\in dom\ f xdom f以及任意 y ∈ R n y\in R^n yRn y T ∇ f ( x ) = 0 → y T ∇ 2 f ( x ) y ≥ 0 y^T\nabla f(x)=0\rightarrow y^T\nabla^2f(x)y\ge0 yTf(x)=0yT2f(x)y0

    对于R上的函数 f f f,二阶条件可以简化为:

    f f f二阶可微,则 f f f是拟凸函数 ⟹ \Longrightarrow 对于任意 x ∈ d o m   f x\in dom\ f xdom f以及任意 y ∈ R n y\in R^n yRn f ′ ( x ) = 0 → f ′ ′ ( x ) ≥ 0 f'(x)=0\rightarrow f''(x)\ge0 f(x)=0f′′(x)0

对数-凸 Log-Convex

定义

  • 函数 f f f是对数凸的 ⟺ \Longleftrightarrow 对于所有 x ∈ d o m   f x\in dom\ f xdom f f ( x ) > 0 f(x)>0 f(x)>0 l o g   f log\ f log f是凸函数(即 f ( θ x + ( 1 − θ ) y ) ≤ f ( x ) θ f ( y ) 1 − θ f(\theta x+(1-\theta)y)\le f(x)^\theta f(y)^{1-\theta} f(θx+(1θ)y)f(x)θf(y)1θ
  • 函数 f f f是对数凹的 ⟺ \Longleftrightarrow 对于所有 x ∈ d o m   f x\in dom\ f xdom f f ( x ) > 0 f(x)>0 f(x)>0 l o g   f log\ f log f是凹函数(即 f ( θ x + ( 1 − θ ) y ) ≥ f ( x ) θ f ( y ) 1 − θ f(\theta x+(1-\theta)y)\ge f(x)^\theta f(y)^{1-\theta} f(θx+(1θ)y)f(x)θf(y)1θ
  • f f f是对数凸函数 ⟺ \Longleftrightarrow 1 f \frac{1}{f} f1是对数凹函数。
  • 对数凸函数是凸函数,非负对数凹函数时凹函数
  • 对数凸函数是拟凸函数,对数凹函数是拟凹函数

共轭函数

定义

设函数 f : R n → R f:R^n\rightarrow R f:RnR,则其共轭函数 f ∗ : R n → R f^*:R^n\rightarrow R f:RnR f ∗ ( y ) = s u p x ∈ d o m   f ( y T x − f ( x ) ) f^*(y)=\underset{x\in dom\ f}{sup}(y^Tx-f(x)) f(y)=xdom fsup(yTxf(x)) y T x − f ( x ) y^Tx-f(x) yTxf(x) d o m   f dom\ f dom f有上界的所有 y ∈ R n y\in R^n yRn构成了 f ∗ f^* f的定义域。

凸性

不论 f f f是否为凸,其共轭函数 f ∗ f^* f一定是凸函数。因为它是关于 y y y的仿射函数的逐点上确界。

对偶范数

∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣的对偶范数为 ∣ ∣ x ∣ ∣ ∗ = s u p ∣ ∣ y ∣ ∣ ≤ 1 y T x ||x||_*=\underset{||y||\le1}{sup}y^Tx ∣∣x=∣∣y∣∣1supyTx

范数的共轭函数

f ∗ ( y ) = { 0 , ∣ ∣ y ∣ ∣ ∗ ≤ 1 + ∞ , o t h e r w i s e f^*(y)= \begin{cases} 0,&||y||_*\le1 \\ +\infin,&otherwise \end{cases} f(y)={0,+,∣∣y1otherwise

  • 16
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Naou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值