凸优化第四章——对偶问题

Lagrange对偶函数

Lagrange函数

对于标准形式的优化问题:

m i n i m i z e f 0 ( x ) s u b j e c t   t o f i ( x ) ≤ 0 , i = 1 , . . . , m h i ( x ) = 0 , i = 1 , . . . , p \begin{align*} minimize &&& f_0(x)\\ subject\ to &&&f_i(x)\le0,i=1,...,m\\ &&&h_i(x)=0,i=1,...,p \end{align*} minimizesubject tof0(x)fi(x)0,i=1,...,mhi(x)=0,i=1,...,p
D = ⋂ i = 1 m d o m   f i   ∩   ⋂ i = 1 p   d o m   h i D=\bigcap_{i=1}^m dom\ f_i\ \cap\ \bigcap_{i=1}^p\ dom\ h_i D=i=1mdom fi  i=1p dom hi,注意 D D D不是可行域,而是各个函数的定义域的交集。

定义该问题的Langrange函数为:

L ( x , λ , ν ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p ν i h i ( x ) , d o m   L = D × R m × R p L(x,\lambda,\nu)=f_0(x)+\sum_{i=1}^m \lambda_if_i(x)+\sum_{i=1}^p\nu_ih_i(x),dom\ L=D\times R^m\times R^p L(x,λ,ν)=f0(x)+i=1mλifi(x)+i=1pνihi(x),dom L=D×Rm×Rp

λ \lambda λ ν \nu ν称为对偶变量或原问题的Lagrange乘子向量。

Lagrange对偶函数

g ( λ , ν ) = i n f x ∈ D ( f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p ν i h i ( x ) ) g(\lambda,\nu)=\bf{\underset{x\in D}{inf}}(f_0(x)+\sum_{i=1}^m \lambda_if_i(x)+\sum_{i=1}^p\nu_ih_i(x)) g(λ,ν)=xDinf(f0(x)+i=1mλifi(x)+i=1pνihi(x))

性质1: g ( λ , ν ) g(\lambda,\nu) g(λ,ν)是仿射函数的逐点下确界,因此无论原问题是不是凸问题,对偶函数一定是凹函数。进一步地,对偶问题一定是凸优化问题。

性质2:设原问题的最优值为 p ∗ p^* p,即 p ∗ = i n f x ∈ D f 0 ( x ) p^*=\bf{\underset{x\in D}{inf}}f_0(x) p=xDinff0(x),则对于任意 λ ⪰ 0 \lambda\succeq0 λ0 ν \nu ν,有 g ( λ , ν ) ≤ p ∗ g(\lambda,\nu)\le p^* g(λ,ν)p

对偶问题

m a x i m i z e g ( λ , ν ) s u b j e c t   t o λ ⪰ 0 \begin{align*} maximize&&&g(\lambda,\nu)\\ subject\ to&&& \lambda\succeq0 \end{align*} maximizesubject tog(λ,ν)λ0

由于对偶函数一定是凹函数,因此对偶问题一定是凸优化问题

对偶函数和共轭函数

共轭函数(conjugate)

定义

设函数 f : R n → R f:R^n\rightarrow R f:RnR,则其共轭函数 f ∗ : R n → R f^*:R^n\rightarrow R f:RnR f ∗ ( y ) = s u p x ∈ d o m   f ( y T x − f ( x ) ) f^*(y)=\underset{x\in dom\ f}{sup}(y^Tx-f(x)) f(y)=xdom fsup(yTxf(x)) y T x − f ( x ) y^Tx-f(x) yTxf(x) d o m   f dom\ f dom f有上界的所有 y ∈ R n y\in R^n yRn构成了 f ∗ f^* f的定义域。

性质1:不论 f f f是否为凸,其共轭函数 f ∗ f^* f一定是凸函数。因为它是关于 y y y的仿射函数的逐点上确界。

性质2:如果 f f f是凸函数且 f f f是闭的( f f f是闭的即 e p i   f epi\ f epi f是闭集),则 f ∗ ∗ = f f^{**}=f f∗∗=f

对偶范数

∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣的对偶范数为 ∣ ∣ x ∣ ∣ ∗ = s u p ∣ ∣ y ∣ ∣ ≤ 1 y T x ||x||_*=\underset{||y||\le1}{sup}y^Tx ∣∣x=∣∣y∣∣1supyTx

范数的共轭函数

f ∗ ( y ) = { 0 , ∣ ∣ y ∣ ∣ ∗ ≤ 1 + ∞ , o t h e r w i s e \begin{align*} f^*(y)= \begin{cases} 0,&||y||_*\le1 \\ +\infin,&otherwise \end{cases} \end{align*} f(y)={0,+,∣∣y1otherwise

例1

考虑一个具有线性不等式以及等式约束的优化问题:
m i n i m i z e f 0 ( x ) s u b j e c t   t o A x ⪯ b C x = d \begin{align*} minimize&&&f_0(x)\\ subject\ to&&&Ax\preceq b\\ &&&Cx=d \end{align*} minimizesubject tof0(x)AxbCx=d
其对偶函数为:
g ( λ , ν ) = − b T λ − d T ν − f 0 ∗ ( − A T λ − C T ν ) d o m   g = { ( λ , ν ) ∣ − A T λ − C T ν ∈ d o m   f 0 ∗ } \begin{align*} g(\lambda,\nu)=-b^T\lambda-d^T\nu-f^*_0(-A^T\lambda-C^T\nu)\\dom\ g=\{(\lambda,\nu)|-A^T\lambda-C^T\nu\in dom\ f_0^*\} \end{align*} g(λ,ν)=bTλdTνf0(ATλCTν)dom g={(λ,ν)ATλCTνdom f0}

例2

考虑问题:
m i n i m i z e ∣ ∣ x ∣ ∣ s u b j e c t   t o A x = b \begin{align*} minimize&&&||x||\\ subject \ to&&&Ax=b \end{align*} minimizesubject to∣∣x∣∣Ax=b
其对偶问题为:
g ( ν ) = { − b T ν , ∥ A T v ∥ ∗ ≤ 1 − ∞ , o t h e r w i s e \begin{align*} g(\nu)= \begin{cases} -b^T\nu,&\parallel A^T v\parallel_*\le 1\\ -\infin,&otherwise \end{cases} \end{align*} g(ν)={bTν,,ATv1otherwise

强对偶性和Slater条件

强对偶性

原问题和对偶问题的最优值相同,即对偶间隙为零。

相对内部

r e l i n t   S = { x ∈ S ∣ B ( x , r ) ∩ a f f   S ∈ S , ∃ r > 0 } relint\ S = \{x\in S|B(x,r)\cap aff\ S\in S,\exist r>0\} relint S={xSB(x,r)aff SS,r>0}

x ∈ r e l i n t   S x\in relint\ S xrelint S,则 x x x是集合 S S S的一个相对内点

说明:如下图所示,二维空间内,圆的相对内部就是一个去了皮的圆;线段的相对内部就是去掉两个端点

在这里插入图片描述

Slater条件

设原问题为凸优化问题,可行域为 D D D,若存在一点 x ∈ r e l i n t   D x\in relint\ D xrelint D使得

f i ( x ) < 0 , i = 1 , . . . , m f_i(x)<0,i=1,...,m fi(x)<0,i=1,...,m A x = b Ax=b Ax=b成立,那么强对偶性成立。

弱化的Slater条件

当部分 f i ( x ) f_i(x) fi(x)为仿射函数时,设 f i ( x ) , i = 1 , . . . , n f_i(x),i=1,...,n fi(x),i=1,...,n是仿射的, f i ( x ) , i = n + 1 , . . . , m f_i(x),i=n+1,...,m fi(x),i=n+1,...,m不是仿射的,则Slater条件可以弱化为:

设原问题为凸优化问题,可行域为 D D D,若存在一点 x ∈ r e l i n t   D x\in relint\ D xrelint D使得

f i ( x ) < 0 , i = n + 1 , . . . , m f_i(x)<0,i=n+1,...,m fi(x)<0,i=n+1,...,m A x = b Ax=b Ax=b成立,那么强对偶性成立。

因此,线性规划问题的强对偶性一定成立。

Slater条件是充分不必要条件

KKT最优性条件

基本要求

  1. 目标函数和约束函数可微;
  2. 强对偶性成立。

KKT条件

5条:
在这里插入图片描述

非凸问题(必要不充分)

对于任意优化问题,如果强对偶性成立,那么其任意一对原问题最优解和对偶问题最优解一定满足KKT条件。

凸问题(充要)

对于凸优化问题:

  1. 如果强对偶性成立,那么其任意一对原问题最优解和对偶问题最优解一定满足KKT条件;
  2. 若存在 ( x , λ , ν ) (x,\lambda, \nu) (x,λ,ν)满足KKT条件,那么它们就是原问题和对偶问题的最优解且对偶间隙为零。
  • 20
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Naou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值