线性规划—MATLAB数学建模

本文详细讲解了线性规划的基本概念,如何将非线性问题转化为线性形式,并通过Matlab实例演示了如何解决投资组合优化问题,包括最大化收益、最小化风险和风险收益权衡。涉及实例包括机床生产、资产投资组合设计和风险收益平衡策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性规划问题求解

1.线性规划问题的解的概念:

标准型:


m a x    z = ∑ j = 1 n c j x j , s . t . { ∑ j = 1 n a i j x j = b i , i = 1 , 2 , ⋯   , m , x j ≥ 0 , j = 1 , 2 , ⋯   , n 。 式 中 : b i ≥ 0 , i = 1 , 2 , ⋯   , m 。 max\;z=\sum_{j=1}^n{c_j}{x_j},\\ s.t. \begin{cases} \sum_{j=1}^n{a_{ij}}{x_j} =b_i,i=1,2,\cdots,m,\\ x_j\geq0,j=1,2,\cdots,n。\\ \end{cases}\\ 式中:b_i\geq0,i=1,2,\cdots,m。 maxz=j=1ncjxj,s.t.{j=1naijxj=bi,i=1,2,,m,xj0,j=1,2,,nbi0,i=1,2,,m

可行解:满足约束条件式的解
x = [ x 1 , ⋯   , x n ] T x=[x_1,\cdots,x_n]^T x=[x1,,xn]T
​ 称为线性规划问题的
可行解
,而让z达到最大值的可行解称为最优解

可行域:所有可行解构成的集合称为问题的可行域,记为R

2.线性规划的Matlab标准形式及软件求解:

​ Matlab中规定线性规划的标准形式为:
m i n f T x ( 1 ) , s . t . { A ⋅ x ≤ b , ( 2 ) A e q ⋅ x = b e q , ( 3 ) l b ≤ x ≤ u b 。 ( 4 ) 式 中 : f , x , b , b e q , l b , u b 为 列 向 量 , 其 中 f 称 为 价 值 向 量 , b 称 为 资 源 向 量 ; A , A e q 为 矩 阵 。 minf^Tx\quad(1),\\ s.t.\begin{cases} A\cdot x\leq b,\quad(2)\\ Aeq\cdot x=beq,\quad(3)\\ lb\leq x\leq ub。\quad(4)\\ \end{cases}\\ 式中:f,x,b,beq,lb,ub为列向量,其中f称为价值向量,b称为资源向量;\\A,Aeq为矩阵。 minfTx(1),s.t.Axb,(2)Aeqx=beq,(3)lbxub(4)f,x,b,beq,lb,ubfb;A,Aeq
PS: (1)式表示求解式。规定求最小值的形式,若要求最大值,则需要把式子求负,即最小值求负表示最大值。

​ (2)式表示不等式约束条件。规定求小于的形式,若是大于则需要通过两边求负进行转换。若有多个不等式条件,则用矩阵的形式来 分别表示A,b。

​ (3)式表示等式约束条件。若有多个等式条件,也用矩阵的形式来分别表示Aeq,beq。

​ (4)式表示取值范围

Matlab中求解线性规划的命令为:

[x,fval] = linprog(f,A,b,Aeq,beq,lb,ub)

​ 式中:x返回决策向量的取值;

​ fval返回目标函数的最优值;

​ f为价值向量;

​ A和b对应线性不等式约束;

​ Aeq和beq对应线性等式约束;

​ lb和ub分别对应决策向量的下界向量和上界向量;

PS: (1)若约束条件中间不齐全,则可以用空向量[]来替代缺失部分,如:

​ [x,fval] = linprog(f,A,b,[],beq,[],ub)

​ (2)若约束条件只有前面条件,则可以直接省略参数,如:

​ [x,fval] = linprog(f,A,b)

3.例题求解应用:

例1.求解下列线性规划问题:
m a x z = 2 x 1 + 3 x 2 − 5 x 3 , s . t . { x 1 + x 2 + x 3 = 7 , 2 x 1 − 5 x 2 + x 3 ≥ 10 , x 1 + 3 x 2 + x 3 ≤ 12 , x 1 , x 2 , x 3 > = 0 。 max \quad z=2x_1+3x_2-5x_3,\\ s.t.\begin{cases} x_1+x_2+x_3=7,\\ 2x_1-5x_2+x_3\geq 10,\\ x_1+3x_2+x_3\leq12,\\ x_1,x_2,x_3>=0。 \end{cases} maxz=2x1+3x25x3,s.t.x1+x2+x3=7,2x15x2+x310,x1+3x2+x312,x1,x2,x3>=0
解:先把上式转化称为Matlab的标准形式:
m i n w = − 2 x 1 − 3 x 2 + 5 x 3 , s . t . { − 2 x 1 + 5 x 2 − x 3 ≤ − 10 , x 1 + 3 x 2 + x 3 ≤ 12 , x 1 + x 2 + x 3 = 7 , x 1 , x 2 , x 3 ≥ 0 。 min\quad w=-2x_1-3x_2+5x_3,\\ s.t.\begin{cases} -2x_1+5x_2-x_3 \leq -10,\\ x_1+3x_2+x_3 \leq 12,\\ x_1+x_2+x_3=7,\\ x_1,x_2,x_3 \geq 0。 \end{cases} minw=2x13x2+5x3,s.t.2x1+5x2x310,x1+3x2+x312,x1+x2+x3=7,x1,x2,x30
现在再把标准形式按照函数提取出我们想要参数

​ 依照**[x,fval] = linprog(f,A,b,Aeq,beq,lb,ub)**

​ 可得:
f = [ − 2 − 3 5 ] 或 者 [ − 2 − 3 5 ] T A = [ − 2 5 − 1 1 3 1 ] b = [ − 10 12 ] 或 者 [ − 10 12 ] T A e q = [ 1 1 1 ] 或 者 [ 1 1 1 ] T b e q = 7 l b = [ 0 0 0 ] 或 者 [ 0 0 0 ] T u b = [ ∞ ∞ ∞ ] 或 者 [ ∞ ∞ ∞ ] T f=\begin{bmatrix} -2\\-3\\5 \end{bmatrix} 或者 \begin{bmatrix} -2 & -3 &5 \end{bmatrix}^T\\ A=\begin{bmatrix} -2 & 5 & -1\\ 1 & 3 & 1 \end{bmatrix}\\ b=\begin{bmatrix} -10\\12 \end{bmatrix} 或者 \begin{bmatrix} -10 & 12 \end{bmatrix}^T\\ Aeq=\begin{bmatrix} 1\\1\\1 \end{bmatrix} 或者 \begin{bmatrix} 1&1&1 \end{bmatrix}^T\\ beq=7\\ lb=\begin{bmatrix} 0\\0\\0 \end{bmatrix} 或者 \begin{bmatrix} 0&0&0 \end{bmatrix}^T\\ ub=\begin{bmatrix} \infty\\\infty\\\infty \end{bmatrix} 或者 \begin{bmatrix} \infty&\infty&\infty \end{bmatrix}^T f=235[235]TA=[215311]b=[1012][1012]TAeq=111[111]Tbeq=7lb=000[000]Tub=[]T
用Matlab中的程序语言来表示:

                f = [-2;-3;5];
                a = [-2,5,-1;1,3,1];
                b = [-10;12];
                aeq = [1,1,1];
                beq = 7;

​ 代入求解时:lb可用zeros(3,1)来生成三行一列的零向量

​ ub则不填参来表示无穷

​ 最后解得的fval取相反数即为所要求的最大值z

完整代码如下:

			   f = [-2;-3;5];
                a = [-2,5,-1;1,3,1];
                b = [-10;12];
                aeq = [1,1,1];
                beq = 7;
                [x,y] = linprog(f,a,b,aeq,beq,zeros(3,1));
                x,y = -y

求解得结果如下图

例1结果

例2:某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元和3000元。生产甲机床需用A、B机器加工,加工时间分别 为每台2h和1h;生产乙机床需用A、B、C三种机器加工,加工时间为每台各1h。若每天可用于加工的机器时数分别为A机器 10h、B机器8h和C机器7h,问该厂应生产甲、乙机床各几台,才能使总利润最大?

​ 解:对上述描述建立数学模型:设该厂生产 x 1 x_1 x1台甲机床和 x 2 x_2 x2台乙机床时总利润z最大,则 x 1 x_1 x1, x 2 x_2 x2应满足:
m a x z = 4 x 1 + 3 x 2 , s . t . { 2 x 1 + x 2 ≤ 10 , x 1 + x 2 ≤ 8 , x 2 ≤ 7 , x 1 , x 2 ≥ 0 。 变 量 x 1 , x 2 为 决 策 变 量 max \quad z=4x_1+3x_2,\\ s.t.\begin{cases} 2x_1+x_2 \leq 10,\\ x_1+x_2 \leq 8,\\ x_2 \leq 7,\\ x_1,x_2 \geq 0。 \end{cases}\\ 变量x_1,x_2为决策变量 maxz=4x1+3x2,s.t.2x1+x210,x1+x28,x27,x1,x20x1,x2
​ 将上式转化为Matlab标准型并抽取参数得:
f = [ − 4 − 3 ] A = [ 2 1 1 1 ] b = [ 10 8 ] l b = [ 0 0 ] u b = [ ∞ 7 ] f=\begin{bmatrix} -4\\-3 \end{bmatrix}\\ A=\begin{bmatrix} 2&1\\ 1&1 \end{bmatrix}\\ b=\begin{bmatrix} 10\\8 \end{bmatrix}\\ lb=\begin{bmatrix} 0\\0 \end{bmatrix}\\ ub=\begin{bmatrix} \infty\\7 \end{bmatrix} f=[43]A=[2111]b=[108]lb=[00]ub=[7]
​ 完整代码如下:

f = [-4;-3];
A = [2,1;1,1];
b = [10;8];
ub = [inf;7];
[x,y] = linprog(f,A,b,[],[],zeros(2,1),ub);
x,y=-y

​ 求解得结果如下图:例2结果

4.可以转化为线性规划的问题:

​ 对于
m i n ∣ x 1 ∣ + ∣ x 2 ∣ + ⋯ + ∣ x n ∣ s . t . A x ≤ b 。 式 中 : x = [ x 1 , ⋯   , x n ] T ; A 和 b 为 相 应 维 数 的 矩 阵 和 向 量 min\quad |x_1|+|x_2|+\cdots +|x_n|\\ s.t.\quad Ax\leq b。\\ 式中:x=[x_1,\cdots,x_n]^T;\\ A和b为相应维数的矩阵和向量 minx1+x2++xns.t.Axbx=[x1,,xn]T;Ab
​ 可以依据对任意的 x i x_i xi,存在 u i , v i ≥ 0 u_i,v_i\geq 0 ui,vi0满足
x i = u i − v i , ∣ x i ∣ = u i + v i x_i=u_i-v_i,|x_i|=u_i+v_i xi=uivi,xi=ui+vi
​ 只要取 u i = x i + ∣ x i ∣ 2 , v i = ∣ x i ∣ − x i 2 u_i=\frac{x_i+|x_i|}{2},v_i =\frac{|x_i|-x_i}{2} ui=2xi+xi,vi=2xixi即可满足上面的条件

​ 这样记 u = [ u 1 , ⋯   , u n ] T , v = [ v 1 , ⋯   , v n ] T u=[u_1,\cdots,u_n]^T,v=[v_1,\cdots,v_n]^T u=[u1,,un]T,v=[v1,,vn]T,即可化问题为
m i n ∑ i = 1 n ( u i + v i ) , s . t . { A ( u − v ) ≤ b , u , v ≥ 0 。 min\quad \sum_{i=1}^{n}(u_i+v_i),\\ s.t.\begin{cases} A(u-v)\leq b,\\ u,v\geq 0。 \end{cases} mini=1n(ui+vi),s.t.{A(uv)b,u,v0
进一步改写模型为
m i n ∑ i = 1 n ( u i + v i ) , s . t . { [ A , − A ] [ u v ] ≤ b , u , v ≥ 0 。 min\quad \sum_{i=1}^{n}(u_i+v_i),\\ s.t.\begin{cases} [A,-A]\begin{bmatrix}u\\v\end{bmatrix}\leq b,\\ u,v\geq 0。 \end{cases} mini=1n(ui+vi),s.t.[A,A][uv]b,u,v0
例3:求解下列数学规划问题:
m i n z = ∣ x 1 ∣ + 2 ∣ x 2 ∣ + 3 ∣ x 3 ∣ + 4 ∣ x 4 ∣ , s . t . { x 1 − x 2 − x 3 + x 4 ≤ − 2 , x 1 − x 2 + x 3 − 3 x 4 ≤ − 1 , x 1 − x 2 − 2 x 3 + 3 x 4 ≤ − 1 2 min\quad z=|x_1|+2|x_2|+3|x_3|+4|x_4|,\\ s.t.\begin{cases} x_1-x_2-x_3+x_4\leq -2,\\ x_1-x_2+x_3-3x_4\leq -1,\\ x_1-x_2-2x_3+3x_4\leq-\frac{1}{2} \end{cases} minz=x1+2x2+3x3+4x4,s.t.x1x2x3+x42,x1x2+x33x41,x1x22x3+3x421
​ 解:做变量变换 u i = x i + ∣ u i ∣ 2 , v i = ∣ x i ∣ − x i 2 u_i=\frac{x_i+|u_i|}{2},v_i=\frac{|x_i|-x_i}{2} ui=2xi+ui,vi=2xixi,i=1,2,3,4,并把新变量重新排序成一维向量 y = [ u v ] = [ u 1 , ⋯   , u 4 , v 1 , ⋯   , v 4 ] T y=\begin{bmatrix}u\\v\end{bmatrix}=[u_1,\cdots,u_4,v_1,\cdots,v4]^T y=[uv]=[u1,,u4,v1,,v4]T,则可 把模型变换为线性规划模型
m i n c T y , s . t . { [ A , − A ] [ u v ] ≤ b , y ≥ 0 。 式 中 : c = [ 1 , 2 , 3 , 4 , 1 , 2 , 3 , 4 ] T , b = [ − 2 , − 1 , − 1 2 ] T , A = [ 1 − 1 − 1 1 1 − 1 1 − 3 1 − 1 − 2 3 ] 。 min\quad c^Ty,\\ s.t.\begin{cases} [A,-A]\begin{bmatrix}u\\v\end{bmatrix}\leq b,\\ y\geq0。 \end{cases}\\ 式中:c=[1,2,3,4,1,2,3,4]^T,\\ b=[-2,-1,-\frac{1}{2}]^T,\\ A=\begin{bmatrix} 1&-1&-1&1\\ 1&-1&1&-3\\ 1&-1&-2&3 \end{bmatrix}。 mincTy,s.t.[A,A][uv]b,y0c=[1,2,3,4,1,2,3,4]T,b=[2,1,21]T,A=111111112133

​ 故Matlab代码如下:

c = 1:4;
c = [c,c]';%构造价值列向量
a = [1 -1 -1 1;1 -1 1 -3;1 -1 -2 3];
a = [a,-a];%构造变换后新的系数矩阵
b = [-2 -2 -1/2]';
[y,z] = linprog(c,a,b,[],[],zeros(8,1))%这里没有等式约束,对应的矩阵为空矩阵
x =  y(1:4) - y(5:end)%变换到原问题的解,x=u-v

​ 结果如图:
在这里插入图片描述

5.经典模型:投资的收益与风险

例4:市场上有n种资产 s i ( i = 1 , 2 , ⋯   , n ) s_i(i=1,2,\cdots,n) si(i=1,2,,n)​可以选择,现用数额为M的相当大的资金作一个时期的投资。这n种资产在这一时期内购买 s i s_i si​的平均收益率为 r i r_i ri​,风险损失率为 q i q_i qi​,投资越分散,总的风险越少,总体风险可用投资的 s i s_i si​中最大的一个风险来度量。

购买 s i s_i si时要付交易费,费率为 p i p_i pi,当购买额不超过给定值 u i u_i ui时,交易费按购买 u i u_i ui计算。另外,假定同期银行存款利率是 r 0 r_0 r0,既无交易也无风险 ( r 0 = 5 % ) (r_0=5\%) (r0=5%)

已知n=4时相关数据如表所示:

s i s_i si r i / % r_i/\% ri/% q i / % q_i/\% qi/% p i / % p_i/\% pi/% u i / 元 u_i/元 ui/
s 1 s_1 s1282.51103
s 2 s_2 s2211.52198
s 3 s_3 s3235.54.552
s 4 s_4 s4252.66.540

试给该公司设计一种投资组合方案,即用给定资金M,有选择地购买若干种资产或存银行生息,使净收益尽可能的大,总体风险尽可能的小

解:首先进行符号规定和基本假设:

1.符号规定

(1) s i 表 示 第 i 种 投 资 项 目 , 如 股 票 、 债 券 等 , i = 0 , 1 , ⋯   , n , 其 中 s 0 指 存 入 银 行 。 s_i表示第i种投资项目,如股票、债券等,i=0,1,\cdots,n,其中s_0指存入银行。 siii=0,1,,n,s0

(2) r i , p i , q i 分 别 表 示 s i 的 平 均 收 益 率 、 交 易 费 率 、 风 险 损 失 率 , i = 0 , 1 , ⋯   , n , 其 中 p 0 = 0 , q 0 = 0. r_i,p_i,q_i分别表示s_i的平均收益率、交易费率、风险损失率,i=0,1,\cdots,n,其中p_0=0,q_0=0. ri,pi,qisii=0,1,,n,p0=0,q0=0.

(3) u i 表 示 s i 的 交 易 定 额 , i = 1 , 2 , ⋯   , n 。 u_i表示s_i的交易定额,i=1,2,\cdots,n。 uisii=1,2,,n

(4) x i 表 示 投 资 项 目 s i 的 资 金 , i = 0 , 1 , ⋯   , n 。 x_i表示投资项目s_i的资金,i=0,1,\cdots,n。 xisii=0,1,,n

(5) a 表 示 投 资 风 险 度 a表示投资风险度 a

(6) Q 表 示 总 体 收 益 Q表示总体收益 Q

2.基本假设

(1) 投 资 数 额 M 相 当 大 , 为 了 便 于 计 算 , 假 设 M = 1 投资数额M相当大,为了便于计算,假设M=1 M便M=1

(2) 投 资 越 分 散 , 总 的 风 险 越 小 投资越分散,总的风险越小

(3) 总 体 风 险 用 投 资 项 目 s i 中 最 大 的 一 个 风 险 来 度 量 总体风险用投资项目s_i中最大的一个风险来度量 si

(4) n + 1 种 资 产 s i 之 间 是 相 互 独 立 的 n+1种资产s_i之间是相互独立的 n+1si

(5) 在 投 资 的 这 一 时 期 内 , r i , p i , q i 为 定 值 , 不 受 意 外 因 素 影 响 在投资的这一时期内,r_i,p_i,q_i为定值,不受意外因素影响 ri,pi,qi

(6) 净 收 益 和 总 体 风 险 只 受 r i , p i , q i 影 响 , 不 受 其 他 因 素 干 扰 净收益和总体风险只受r_i,p_i,q_i影响,不受其他因素干扰 ri,pi,qi

再构建模型:

( 1 ) 总 体 风 险 用 所 投 资 的 s i 中 最 大 的 一 个 风 险 来 衡 量 , 即 m a x { q i x i ∣ i = 1 , 2 , ⋯   , n } (1)总体风险用所投资的s_i中最大的一个风险来衡量,即\\max\{q_ix_i|i=1,2,\cdots,n\} (1)simax{qixii=1,2,,n}

(2) 购 买 s i ( i = 1 , 2 , ⋯   , n ) 所 付 交 易 费 是 一 个 分 段 函 数 , 即 交 易 费 = { p i x i , x i > u i , p i u i , x i ≤ u i 。 而 题 目 所 给 的 定 值 u i ( 单 位 : 元 ) 相 当 总 投 资 M 很 少 , p i U i 更 小 , 这 样 购 买 s i 的 净 收 益 可 以 化 简 为 ( r i − p i ) x i 。 购买s_i(i=1,2,\cdots,n)所付交易费是一个分段函数,即\\交易费=\begin{cases}p_ix_i,x_i> u_i,\\p_iu_i,x_i\leq u_i。\end{cases}\\而题目所给的定值u_i(单位:元)相当总投资M很少,p_iU_i更小,这样购买s_i的净收益可以化简为(r_i-p_i)x_i。 si(i=1,2,,n)={pixi,xi>ui,piui,xiuiui()MpiUisi(ripi)xi

(3)要让净收益尽可能大,总体风险尽可能小,这是一个多目标规划模型:
{ m a x ∑ i = 0 n ( r i − p i ) x i , m i n { m a x { q i x i } } \begin{cases} max\sum_{i=0}^{n}(r_i-p_i)x_i,\\ min\{max\{q_ix_i\}\} \end{cases} {maxi=0n(ripi)xi,min{max{qixi}}

s . t . { ∑ i = 0 n ( 1 + p i ) x i = M , x i ≥ 0 , i = 0 , 1 , ⋯   , n 。 s.t.\begin{cases} \sum_{i=0}^{n}(1+p_i)x_i=M,\\ x_i\geq 0,i=0,1,\cdots,n。 \end{cases} s.t.{i=0n(1+pi)xi=M,xi0,i=0,1,,n

再简化模型:

一是固定风险水平,优化收益。
m a x ∑ i = 0 n ( r i − p i ) x i , s . t . { q i x i M ≤ a , i = 1 , 2 , ⋯   , n , ∑ i = 0 n ( 1 + p i ) x i = M , x i ≥ 0 , i = 0 , 1 , ⋯   , n 。 max\sum_{i=0}^n(r_i-p_i)x_i,\\ s.t.\begin{cases} \frac{q_ix_i}{M}\leq a,i=1,2,\cdots,n,\\ \sum_{i=0}^{n}(1+p_i)x_i=M,x_i\geq0,i=0,1,\cdots,n。 \end{cases} maxi=0n(ripi)xi,s.t.{Mqixia,i=1,2,,n,i=0n(1+pi)xi=M,xi0,i=0,1,,n
二是固定盈利水平,极小化风险
m i n { m a x { q i x i } } , s . t . { ∑ i = 0 n ( r i − p i ) x i ≥ k , ∑ i = 0 n ( 1 + p i ) x i = M , x i ≥ 0 , i = 0 , 1 , ⋯   , n 。 min\{max\{q_ix_i\}\},\\ s.t.\begin{cases} \sum_{i=0}^{n}(r_i-p_i)x_i\geq k,\\ \sum_{i=0}^{n}(1+p_i)x_i = M,\\ x_i\geq 0,i=0,1,\cdots,n。 \end{cases} min{max{qixi}},s.t.i=0n(ripi)xik,i=0n(1+pi)xi=M,xi0,i=0,1,,n
三是对风险收益分别赋予权重s和1-s,s称为投资偏好系数
m i n s { m a x { q i x i } } − ( 1 − s ) ∑ i = 0 n ( r i − p i ) x i , s . t . { ∑ i = 0 n ( 1 + p i ) x i = M , x i ≥ 0 , i = 0 , 2 , ⋯   , n min\quad s\{max\{q_ix_i\}\}-(1-s)\sum_{i=0}^{n}(r_i-p_i)x_i,\\ s.t.\begin{cases} \sum_{i=0}^{n}(1+p_i)x_i=M,\\ x_i\geq 0,i=0,2,\cdots,n \end{cases} mins{max{qixi}}(1s)i=0n(ripi)xi,s.t.{i=0n(1+pi)xi=M,xi0,i=0,2,,n
模型一代码如下:

%%从a=0开始以0.001为步长进行循环搜索
a = 0;
hold on
while a<0.05
	c = [-0.05,-0.27,-0.19,-0.185,-0.185];
	A = [zeros(4,1),diag([0.025,0.015,0.055,0.026])];
	b = a*ones(4,1);
	Aeq = [1,1.01,1.02,1.045,1.065];
	beq = 1;
	LB = zeros(5,1);
	[x,Q] = linprog(c,A,b,Aeq,beq,LB);
	Q = -Q;
	plot(a,Q,'*k');
	a = a + 0.001;
end
xlabel('a'),ylabel('Q')

结果如图:

在这里插入图片描述

结果分析:

( 1 ) 风 险 大 , 收 益 也 大 (1)风险大,收益也大 (1)

( 2 ) 当 投 资 越 分 散 时 , 投 资 者 承 担 的 风 险 越 小 (2)当投资越分散时,投资者承担的风险越小 (2)

( 3 ) 在 a = 0.006 附 近 有 一 个 转 折 点 , 在 这 一 点 左 边 , 风 险 增 加 很 小 时 , 利 润 增 长 很 快 ; 在 这 一 点 的 右 边 反 之 , 所 以 应 选 a = 0.6 % , Q = 20 % , 所 以 对 应 的 投 资 方 案 为 风 险 度 a = 0.006 , 收 益 Q = 0.2019 , x 0 = 0 , x 1 = 0.24 , x 2 = 0.4 , x 3 = 0.1091 , x 4 = 0.2212. (3)在a=0.006附近有一个转折点,在这一点左边,风险增加很小时,利润增长很快;在这一点的右边反之,所以应选a=0.6\%,Q=20\%,\\所以对应的投资方案为风险度a=0.006,收益Q=0.2019,x_0=0,x_1=0.24,x_2=0.4,x_3=0.1091,x_4=0.2212. (3)a=0.006a=0.6%,Q=20%,a=0.006,Q=0.2019,x0=0,x1=0.24,x2=0.4,x3=0.1091,x4=0.2212.

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值