如何判断两个随机变量是否独立,同分布

独立两个判断条件

1,设(x,y)的密度函数为f(x,y),其定义域是矩形区域。联合密度函数的区域必须为矩形区域,这很重要。可以证明一波,若x的范围为(0,1),y的范围为(3,5)如果他们相互独立,那么组成的联合密度函数,每一个x,都可以对应所有的y,所以组成的范围为矩形。如果联合密度函数的组成不为矩形,例如为圆,将他们拆开,不能满足每一个x,都能对应所有的y。即不能满足两个随机变量相互独立的要求。

2,满足联合密度函数f(x,y)可分离变量,即存在可积函数g(x),h(y)使f(x,y)=g(x)h(y)。



同分布判断

        1,不严谨的话,观察联合密度函数的范围是否关于y=x对称,概率密度是否一样。

        2,严谨的做法,分别求出边缘密度函数,观察概率密度是否相等。

例题:

可知,联合密度函数区域不为矩形—>不独立

范围关于y=x对称,且密度函数一样—>同分布

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值