yolov8上使用gpu教程

yolov8上使用gpu教程

安装Cuda和Cudnn

1.查看支持的cuda版本,并去官网下载。

nvidia-smi

在这里插入图片描述
2.网址:https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述
在这里插入图片描述
3.安装细节
安装的前提基础是,有vs的C++环境。我电脑有vs2019的C++环境。
在这里插入图片描述
4.取消勾选,这里就借用了其他博主的一些图。
附链接
一开始没有取消勾选,会报错。
在这里插入图片描述
选择自定义
在这里插入图片描述
在选择组件的时候,将CUDA中的Nsight VSE和Visual Studio Integration取消勾选,后选择下一步,即可安装成功。
在这里插入图片描述
5.查看安装成功与否。
在这里插入图片描述
6.安装cudnn。参考一个博主的文章:链接
下载cudnn,先注册账号登录。
选择自己的合适版本。
下载地址:https://developer.nvidia.com/rdp/cudnn-download
在这里插入图片描述
7.解压
cudnn压缩包解压如图所示
在这里插入图片描述
找到cuda安装目录,将这三个文件夹下的文件全部移到cuda对应的文件夹下。
在这里插入图片描述
8.添加环境变量
找到安装目录,将这两个添加进去。
在这里插入图片描述
9.测试cudnn是否安装成功。
cd到安装目录下的 …\extras\demo_suite,然后分别执行bandwidthTest.exe和deviceQuery.exe(进到目录后需要直接输“bandwidthTest.exe”和“deviceQuery.exe”),得到下图:
在这里插入图片描述
在这里插入图片描述
至此,安装结束。

yolov8上使用gpu

1.新创建conda虚拟环境,yolov8_conda。

conda create -n yolov8_conda pyhton=3.10

2.别忘了pycharm中也要切换刚创建的环境
在这里插入图片描述
3.进入虚拟环境,下载安装yolov8所需依赖

activate yolov8_conda
 pip install ultralytics

4.下载对应gpu版本的torch
在这里插入图片描述
我这里cuda版本是11.7
去pytorch官网,下载对应的版本。最好下载cu+的,pip命令的。因为下其他的我不知道为什么失败了。
在这里插入图片描述
5.测试gpu,为True即可。

import torch

# 检查torch是否有CUDA支持,即是否能用GPU
print(torch.cuda.is_available())

# 如果CUDA可用,它还会打印出当前默认的CUDA设备(通常是第一个GPU)
if torch.cuda.is_available():
    print(torch.cuda.get_device_name(0))
print(torch.version.cuda)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

在这里插入图片描述

Visual Studio Code (VSCode)本身不是一个运行环境,但它可以配合使用配置适当的插件和命令行工具来执行深度学习模型,如YOLOv8YOLOv8是一种基于神经网络的目标检测算法,如果你想要利用GPU加速训练或推理过程,你需要设置好几个步骤: 1. **安装依赖**:首先,确保你已经在系统上安装了CUDA和cuDNN(NVIDIA的计算库),以及Python的PyTorch或TensorFlow等深度学习框架。这些通常需要通过NVIDIA官网下载并按照指示安装。 2. **选择支持GPU的环境**:在VSCode中,你可以选择使用conda(创建独立的Python环境)或pip创建一个新的环境,并在里面安装所需的库版本,比如torchvision==0.9.0+cu111(适用于CUDA 11.x)。 ``` conda create -n yolov8-gpu python=3.7 torchvision cudatoolkit=11.0 -c pytorch ``` 3. **激活环境**:安装完之后,激活新的环境: ``` conda activate yolov8-gpu ``` 4. **编写并运行脚本**:在VSCode中,你可以使用Jupyter Notebook、Python终端或者VSCode的"tasks.json"文件来运行训练脚本。确保你的脚本设置了`device=torch.device('cuda')`来指定GPU使用。 5. **配置任务**:在VSCode的任务配置中,添加一项专门用于GPU运行的配置,指定合适的Python路径和训练脚本,例如: ```json { "version": "2.0.0", "tasks": [ { "label": "train", "type": "shell", "command": "python", "args": ["path/to/train.py", "--use-gpu"], "problemMatcher": [] } ] } ``` 6. **启动训练**:在VSCode的终端或任务视图中,选择“run task”来启动GPU训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值