raise RuntimeError(f‘DataLoader worker (pid(s) {pids_str}) exited unexpectedly‘) from e Runtime

Mac M1 Pytorch 测试

最近新入手了一个二手的macbook air m1
准备测试一下m1应对机器学习的能力
找到一位老哥的文章以及代码进行测试:
https://blog.csdn.net/KaelCui/article/details/106184158


问题描述

运行范例代码之后出现如下错误提示:
raise RuntimeError(f’DataLoader worker (pid(s) {pids_str}) exited unexpectedly’) from e RuntimeError: DataLoader worker (pid(s) 57383) exited unexpectedly

范例代码如下

import torch 
from torch import nn 
import torchvision 
from torchvision import transforms 
import torch.nn.functional as F 


import os,sys,time
import numpy as np
import pandas as pd
import datetime 
from tqdm import tqdm 
from copy import deepcopy
from torchmetrics import Accuracy


def printlog(info):
    nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print("\n"+"=========="*8 + "%s"%nowtime)
    print(str(info)+"\n")
    
    
#================================================================================
# 一,准备数据
#================================================================================

transform = transforms.Compose([transforms.ToTensor()])

ds_train = torchvision.datasets.MNIST(root="mnist/",train=True,download=True,transform=transform)
ds_val = torchvision.datasets.MNIST(root="mnist/",train=False,download=True,transform=transform)

dl_train =  torch.utils.data.DataLoader(ds_train, batch_size=128, shuffle=True, num_workers=2)
dl_val =  torch.utils.data.DataLoader(ds_val, batch_size=128, shuffle=False, num_workers=2)


#================================================================================
# 二,定义模型
#================================================================================


def create_net():
    net = nn.Sequential()
    net.add_module("conv1",nn.Conv2d(in_channels=1,out_channels=64,kernel_size = 3))
    net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2))
    net.add_module("conv2",nn.Conv2d(in_channels=64,out_channels=512,kernel_size = 3))
    net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
    net.add_module("dropout",nn.Dropout2d(p = 0.1))
    net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
    net.add_module("flatten",nn.Flatten())
    net.add_module("linear1",nn.Linear(512,1024))
    net.add_module("relu",nn.ReLU())
    net.add_module("linear2",nn.Linear(1024,10))
    return net

net = create_net()
print(net)

# 评估指标
class Accuracy(nn.Module):
    def __init__(self):
        super().__init__()

        self.correct = nn.Parameter(torch.tensor(0.0),requires_grad=False)
        self.total = nn.Parameter(torch.tensor(0.0),requires_grad=False)

    def forward(self, preds: torch.Tensor, targets: torch.Tensor):
        preds = preds.argmax(dim=-1)
        m = (preds == targets).sum()
        n = targets.shape[0] 
        self.correct += m 
        self.total += n
        
        return m/n

    def compute(self):
        return self.correct.float() / self.total 
    
    def reset(self):
        self.correct -= self.correct
        self.total -= self.total
        
#================================================================================
# 三,训练模型
#================================================================================     

loss_fn = nn.CrossEntropyLoss()
optimizer= torch.optim.Adam(net.parameters(),lr = 0.01)   
metrics_dict = nn.ModuleDict({"acc":Accuracy()})


# =========================移动模型到mps上==============================
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
net.to(device)
loss_fn.to(device)
metrics_dict.to(device)
# ====================================================================


epochs = 20 
ckpt_path='checkpoint.pt'

#early_stopping相关设置
monitor="val_acc"
patience=5
mode="max"

history = {}

for epoch in range(1, epochs+1):
    printlog("Epoch {0} / {1}".format(epoch, epochs))

    # 1,train -------------------------------------------------  
    net.train()
    
    total_loss,step = 0,0
    
    loop = tqdm(enumerate(dl_train), total =len(dl_train),ncols=100)
    train_metrics_dict = deepcopy(metrics_dict) 
    
    for i, batch in loop: 
        
        features,labels = batch
        
        # =========================移动数据到mps上==============================
        features = features.to(device)
        labels = labels.to(device)
        # ====================================================================
        
        #forward
        preds = net(features)
        loss = loss_fn(preds,labels)
        
        #backward
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
            
        #metrics
        step_metrics = {"train_"+name:metric_fn(preds, labels).item() 
                        for name,metric_fn in train_metrics_dict.items()}
        
        step_log = dict({"train_loss":loss.item()},**step_metrics)

        total_loss += loss.item()
        
        step+=1
        if i!=len(dl_train)-1:
            loop.set_postfix(**step_log)
        else:
            epoch_loss = total_loss/step
            epoch_metrics = {"train_"+name:metric_fn.compute().item() 
                             for name,metric_fn in train_metrics_dict.items()}
            epoch_log = dict({"train_loss":epoch_loss},**epoch_metrics)
            loop.set_postfix(**epoch_log)

            for name,metric_fn in train_metrics_dict.items():
                metric_fn.reset()
                
    for name, metric in epoch_log.items():
        history[name] = history.get(name, []) + [metric]
        

    # 2,validate -------------------------------------------------
    net.eval()
    
    total_loss,step = 0,0
    loop = tqdm(enumerate(dl_val), total =len(dl_val),ncols=100)
    
    val_metrics_dict = deepcopy(metrics_dict) 
    
    with torch.no_grad():
        for i, batch in loop: 

            features,labels = batch
            
            # =========================移动数据到mps上==============================
            features = features.to(device)
            labels = labels.to(device)
            # ====================================================================
            
            #forward
            preds = net(features)
            loss = loss_fn(preds,labels)

            #metrics
            step_metrics = {"val_"+name:metric_fn(preds, labels).item() 
                            for name,metric_fn in val_metrics_dict.items()}

            step_log = dict({"val_loss":loss.item()},**step_metrics)

            total_loss += loss.item()
            step+=1
            if i!=len(dl_val)-1:
                loop.set_postfix(**step_log)
            else:
                epoch_loss = (total_loss/step)
                epoch_metrics = {"val_"+name:metric_fn.compute().item() 
                                 for name,metric_fn in val_metrics_dict.items()}
                epoch_log = dict({"val_loss":epoch_loss},**epoch_metrics)
                loop.set_postfix(**epoch_log)

                for name,metric_fn in val_metrics_dict.items():
                    metric_fn.reset()
                    
    epoch_log["epoch"] = epoch           
    for name, metric in epoch_log.items():
        history[name] = history.get(name, []) + [metric]

    # 3,early-stopping -------------------------------------------------
    arr_scores = history[monitor]
    best_score_idx = np.argmax(arr_scores) if mode=="max" else np.argmin(arr_scores)
    if best_score_idx==len(arr_scores)-1:
        torch.save(net.state_dict(),ckpt_path)
        print("<<<<<< reach best {0} : {1} >>>>>>".format(monitor,
             arr_scores[best_score_idx]),file=sys.stderr)
    if len(arr_scores)-best_score_idx>patience:
        print("<<<<<< {} without improvement in {} epoch, early stopping >>>>>>".format(
            monitor,patience),file=sys.stderr)
        break 
    net.load_state_dict(torch.load(ckpt_path))
    
dfhistory = pd.DataFrame(history)



原因分析:

参考:https://blog.csdn.net/KaelCui/article/details/106184158

解决方案:

command+f 搜索 numworkers
发现两处numworkers = 2
删除即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值