yolo各模块详解

class Conv(nn.Module):
    # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

代码定义了一个名为Conv的类,它是nn.Module的子类。该类执行一个标准的卷积操作,可选地包括激活函数和批归一化。

该类具有以下属性和方法:

  • default_act:这是一个类属性,设置为nn.SiLU()(Sigmoid-weighted Linear Unit),它是卷积操作中使用的默认激活函数。
  • __init__:这是构造方法,用于初始化Conv对象。它接受以下参数:
  • c1:输入通道数。
  • c2:输出通道数。
  • k:卷积核大小(默认为1)。
  • s:步长大小(默认为1)。
  • p:填充大小(默认为None)。
  • g:分组数(默认为1)。
  • d:膨胀因子(默认为1)。
  • act:激活函数或True(默认为True)。

在这个方法中,初始化了一个Conv2d层、BatchNorm2d层和激活函数,并将它们存储为属性。

在该方法中,首先计算隐藏通道数c_,然后初始化了三个Conv层 cv1cv2 和 cv3,其中 cv1 和 cv2 是1x1的卷积层,cv3 是具有输出通道数c2的1x1的卷积层。这些Conv层用于处理输入数据。 然后,使用nn.Sequential()初始化了一个包含n个Bottleneck模块的Sequential网络,每个Bottleneck模块的输入和输出通道数都是c_

在该方法中,首先计算隐藏通道数c_,然后初始化了两个Conv层 cv1 和 cv2。其中 cv1 是用于处理输入张量的1x1卷积层,将输入通道数减少到c_cv2 是用于最终输出的1x1卷积层,将输入通道数增加到c2。 接下来,使用nn.MaxPool2d初始化了一个最大池化层,池化核大小为k,步长为1,填充大小为k // 2。这个最大池化层用于执行空间金字塔池化操作。

  • forward:该方法执行Conv对象的前向传播。它接受一个输入张量x,按照顺序应用卷积操作、批归一化和激活函数。然后返回输出张量。

  • forward_fuse:该方法类似于forward,但不包括批归一化。它只执行卷积操作和激活函数。然后返回输出张量。

    class C3(nn.Module):
        # CSP Bottleneck with 3 convolutions
        def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
            super().__init__()
            c_ = int(c2 * e)  # hidden channels
            self.cv1 = Conv(c1, c_, 1, 1)
            self.cv2 = Conv(c1, c_, 1, 1)
            self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
            self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
    
        def forward(self, x):
            return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
    

    代码定义了一个名为C3的类,它是nn.Module的子类。该类实现了一个带有3个卷积层的CSP Bottleneck结构。

    该类有以下属性和方法:

  • __init__:构造方法,用于初始化C3对象。它接受以下参数:
  • c1:输入通道数。
  • forward:该方法执行C3对象的前向传播。它接受一个输入张量x,首先将输入张量通过cv1进行卷积,然后将输入张量通过cv2进行卷积,并将两者结果进行拼接。接着将拼接后的张量作为输入传递给Sequential网络m进行处理。最后,将处理后的结果和通过cv3进行卷积的输入张量进行拼接,并返回最终的输出张量。
    • c2:输出通道数。
    • n:重复次数(默认为1)。
    • shortcut:是否使用残差连接(默认为True)。
    • g:分组数(默认为1)。
    • e:扩展系数(默认为0.5)。
      class SPPF(nn.Module):
          # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
          def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
              super().__init__()
              c_ = c1 // 2  # hidden channels
              self.cv1 = Conv(c1, c_, 1, 1)
              self.cv2 = Conv(c_ * 4, c2, 1, 1)
              self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
      
          def forward(self, x):
              x = self.cv1(x)
              with warnings.catch_warnings():
                  warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
                  y1 = self.m(x)
                  y2 = self.m(y1)
                  return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
      

      码定义了一个名为SPPF的类,它是nn.Module的子类。该类实现了一个用于YOLOv5的SPPF(Spatial Pyramid Pooling - Fast)层。

      该类有以下属性和方法:

    • __init__:构造方法,用于初始化SPPF对象。它接受以下参数:
    • c1:输入通道数。
  • forward:该方法执行SPPF对象的前向传播。它接受一个输入张量x,首先通过cv1对输入张量进行1x1的卷积。接下来,使用最大池化层mcv1的输出张量进行多次池化操作,生成不同尺度的特征图。最后,将cv1的输出张量、池化特征图进行拼接,并通过cv2进行1x1的卷积,得到最终的输出张量。
    • c2:输出通道数。
    • k:池化核大小(默认为5)。
      def parse_model(d, ch):  # model_dict, input_channels(3)
          # Parse a YOLOv5 model.yaml dictionary
          LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
          anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
          if act:
              Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
              LOGGER.info(f"{colorstr('activation:')} {act}")  # print
          na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
          no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
      
          layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
          for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
              m = eval(m) if isinstance(m, str) else m  # eval strings
              for j, a in enumerate(args):
                  with contextlib.suppress(NameError):
                      args[j] = eval(a) if isinstance(a, str) else a  # eval strings
      
              n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
              if m in {
                      Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                      BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
                  c1, c2 = ch[f], args[0]
                  if c2 != no:  # if not output
                      c2 = make_divisible(c2 * gw, 8)
      
                  args = [c1, c2, *args[1:]]
                  if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                      args.insert(2, n)  # number of repeats
                      n = 1
              elif m is nn.BatchNorm2d:
                  args = [ch[f]]
              elif m is Concat:
                  c2 = sum(ch[x] for x in f)
              # TODO: channel, gw, gd
              elif m in {Detect, Segment}:
                  args.append([ch[x] for x in f])
                  if isinstance(args[1], int):  # number of anchors
                      args[1] = [list(range(args[1] * 2))] * len(f)
                  if m is Segment:
                      args[3] = make_divisible(args[3] * gw, 8)
              elif m is Contract:
                  c2 = ch[f] * args[0] ** 2
              elif m is Expand:
                  c2 = ch[f] // args[0] ** 2
              else:
                  c2 = ch[f]
      
              m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
              t = str(m)[8:-2].replace('__main__.', '')  # module type
              np = sum(x.numel() for x in m_.parameters())  # number params
              m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
              LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
              save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
              layers.append(m_)
              if i == 0:
                  ch = []
              ch.append(c2)
          return nn.Sequential(*layers), sorted(save)

      代码定义了一个名为parse_model的函数,用于解析YOLOv5的model.yaml字典。

      该函数接受两个参数:d是一个包含YOLOv5模型配置信息的字典,ch是输入通道数的列表。

      函数的主要功能是根据模型配置信息解析出网络的结构,并返回一个包含所有层的nn.Sequential对象以及一个已排序的保存列表。

      具体的解析过程如下:

    • 首先从模型配置信息中提取anchors,nc,gd,gw和act等值。其中,anchors是anchor框的尺寸信息,nc是类别数,gd是深度相关的参数,gw是宽度相关的参数,act是激活函数的名称。
    • 如果act存在,则将Conv类的默认激活函数default_act重新定义为act所指定的激活函数。
    • 根据anchors的信息计算出na(anchor框的数量),并计算出no(输出的特征图通道数)。
    • 初始化layers、save和c2三个列表,用于存储每一层的模块、需要保存的层的索引和最后一个层的通道数。
    • 遍历模型配置信息中的每一层,根据模块类型和参数构建相应的模块对象,并添加到layers列表中。
    • 在遍历的过程中,根据不同的模块类型,对参数进行相应的处理。例如,对于Conv、Bottleneck、SPP等模块,需要根据通道数和深度倍数进行调整;对于Detect和Segment等模块,需要将通道数的列表作为参数传入;对于Contract和Expand等模块,需要计算通道数的改变。
    • 将每个模块对象的相关信息存储到相应的属性中,并将保存的层信息添加到save列表中。
    • 最后,返回一个nn.Sequential对象,其中包含所有的模块,以及一个已排序的保存列表。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值