1、YOLO v5网络结构
2、输入端
3、Backone网络
4、Neck网络
5、Head网络
1、YOLO v5网络结构

图 1 YOLO v5网络结构图
由上图可知,YOLO v5主要由输入端、Backone、Neck以及Prediction四部分组成。其中:
(1) **Backbone:**在不同图像细粒度上聚合并形成图像特征的卷积神经网络。
(2) **Neck:**一系列混合和组合图像特征的网络层,并将图像特征传递到预测层。
(3) Head: 对图像特征进行预测,生成边界框和并预测类别。
下面介绍YOLO v5各部分网络包括的基础组件:
**CBL:**由Conv+BN+Leaky_relu激活函数组成
**Res unit:**借鉴ResNet网络中的残差结构,用来构建深层网络
**CSP1_X:**借鉴CSPNet网络结构,该模块由CBL模块、Res unint模块以及卷积层、Concate组成
**CSP2_X:**借鉴CSPNet网络结构,该模块由卷积层和X个Res unint模块Concate组成而成
**Focus:**首先将多个slice结果Concat起来,然后将其送入CBL模块中
**SPP:**采用1×1、5×5、9×9和13×13的最大池化方式,进行多尺度特征融合
2、输入端详解

本文详细介绍了YOLO v5的网络结构,包括输入端、Backbone、Neck和Head网络。重点讲解了Backbone中的CSP1_X结构,Neck中的CSP2_X和FPN+PAN结构,以及Head网络中采用的CIOU_LOSS。还探讨了数据增强中的Mosaic方法和自适应锚框计算、图片缩放策略,以提升模型训练和推理速度。
最低0.47元/天 解锁文章

3万+

被折叠的 条评论
为什么被折叠?



