>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**
我的环境:
- 语言环境:Python3.8
- 编译器:jupyter lab
- 深度学习环境:TensorFlow2.15
一、前期工作
1. 设置GPU
2. 导入数据
3. 归一化
数据归一化作用
- 使不同量纲的特征处于同一数值量级,减少方差大的特征的影响,使模型更准确。
- 加快学习算法的收敛速度。
4. 可视化图片
5. 调整图片格式
二、构建CNN网络模型
三、编译模型
四、训练模型
五、预测
索引为9时的输出分数最大,预测正确。
六、个人总结
1.使用tensorflow进行数据集识别,与pytorch框架有所不同,但大致操作不变。
2.可以将图像数据归一化到1以内,提高模型训练速度。