第T1周:实现mnist手写数字识别

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

我的环境:

  • 语言环境:Python3.8
  • 编译器:jupyter lab
  • 深度学习环境:TensorFlow2.15

一、前期工作

1. 设置GPU

2. 导入数据

3. 归一化

数据归一化作用

  • 使不同量纲的特征处于同一数值量级,减少方差大的特征的影响,使模型更准确
  • 加快学习算法的收敛速度

4. 可视化图片

5. 调整图片格式

二、构建CNN网络模型

三、编译模型

四、训练模型

五、预测

索引为9时的输出分数最大,预测正确。

六、个人总结

1.使用tensorflow进行数据集识别,与pytorch框架有所不同,但大致操作不变。

2.可以将图像数据归一化到1以内,提高模型训练速度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值