语义通信论文略读(六)Variational Source-Channel Coding for Semantic Communication

Variational Source-Channel Coding for Semantic Communication

语义通信的变分源信道编码

· 作者: Yulong Feng, Jing Xu, Liujun Hu, Guanghui Yu, Xiangyang Duan
· 所属机构: 移动网络与移动多媒体技术国家重点实验室,中国深圳 518055;中兴通讯股份有限公司,中国深圳南山区 518055
· 关键词: 人工智能,语义通信,联合源信道编码,变分源信道编码
· 时间:2024年

研究背景:

1. 人工智能与经典通信的融合: 人工智能(AI)的发展为经典通信带来了新的机遇和挑战,AI应用对当前通信网络产生了显著的传输压力,并影响了信息的存储和利用方式。
2. 语义通信技术的兴起: 语义通信技术作为连接AI与经典通信的关键桥梁,其系统通常采用自动编码器(AE)模型,但AE缺乏AI原理与通信策略的深度整合,难以解释联合源信道编码(JSCC)的必要性和性能提升的原因。
3. 数据失真与语义通信: 语义通信与经典通信的主要区别在于数据失真,语义通信允许数据失真,通过建立先验信息(知识库)实现语义保真。

研究方法:

1. 无损与有损通信的探讨: 无损通信与有损通信的区分,强调了语义通信在数据失真下的框架,即通过有效利用知识库实现信息传输的语义保真。
2. JSCC的必要性分析: 由于语义通信涉及数据失真,JSCC成为实现最优语义通信的必要策略。
3. 变分源信道编码(VSCC)方法的提出: 基于数据失真理论,结合变分推断和信道特性,提出VSCC方法构建语义通信系统,使用深度学习网络开发基于VSCC方法的语义通信系统,并展示其语义传输能力。
在这里插入图片描述
在这里插入图片描述

实验设计:

1. 系统构建: 使用ResNet块和注意力块构建端到端的语义通信模型,该模型包括联合编码器和联合解码器,信道作为联合编码器的一部分。
2. 训练方法: 使用Mini-ImageNet数据集进行训练和测试,该数据集包含100个类别,每个类别600张图片,共60,000张图片。
3. 测试方法: 采用两种测试方法,一种是传输方差测试方法,另一种是固定方差测试方法,通过比较不同信道信噪比(SNR)下的传输性能来评估模型。

结果分析:

1. VSCC方法的语义通信能力: 实验结果表明,VSCC方法能够有效提取图像的共同特征,并将其输出为特征分布的方差,这些方差代表数据分散程度,与有损传输相对应。
2. VSCC方法的信道匹配能力: 通过调整信道匹配常数(CMC),VSCC模型在不同信道SNR下表现出不同的传输性能,表明信道作为联合编码器的一部分,对数据失真有贡献。
3. VSCC、VAE和AE方法的比较: VSCC模型在数据恢复方面优于VAE模型,但略逊于AE模型,这表明VSCC方法在语义通信方面具有一定的优势。

总体结论:

1. 语义通信的关键挑战: 语义通信需要解决的问题包括数据失真的来源、JSCC与传统分离编码方法的差异以及信道在JSCC框架中的作用。
2. VSCC方法的优势: VSCC方法通过引入潜在变量,将信道整合到联合编码过程中,编码原始数据为信道依赖的特征分布,允许数据通过编码特征分布进行分类,同时保留原始数据的分布特征。
3. 未来工作展望: 未来的研究需要进一步探索数据分布特征与语义意义之间的关系,以及如何通过扩散模型增强特征分布的提取和恢复,以提高VSCC方法的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值