机器学习笔记
文章平均质量分 71
python环境,各种机器学习,回归算法,神经网络,深度学习,聚类学习的等的理论和实现算法。教程来源与各种博客,网课,书籍。
ζั͡ ั͡雾 ั͡狼 ั͡✾
如果没能一次成功,那就叫它1.0版吧
展开
-
[从0开始机器学习]8.过拟合问题和正则化方法
过拟合问题是由于你拟合的变量阶次太高,回归问题表现在俩点直接抖动的情况,分类问题表现在分割每一个局部特殊点。解决方法就是给代价函数加上正则化项用来惩罚系数矩阵过大,对常数项不惩罚的情况: 注意seita0也就是常数项还是原来的规则 以一元n次回归的过拟合情况举例:以下面代码为例子:原创 2022-10-24 23:07:48 · 333 阅读 · 2 评论 -
[从0开始机器学习]7.逻辑回归 多分类
多元分类,实际上是n个一对多的二元分类,得到n个系数数组,预测的时候,分别代入这几个数组,当H预测函数概率最大的时候,就是那个分类。三个类别分类,就得到三个K系数组,得到三个预测方程,和三类分界线原创 2022-10-23 23:32:33 · 877 阅读 · 0 评论 -
[从零开始机器学习]6.逻辑回归 非线性二分类
非线性逻辑回归,主要通过给出的俩个变量,构建出一个新的矩阵,这个矩阵的其他元代表给出的这俩个变量的高次数。再根据上一节课的步骤做出来就行。主要需要注意最后得到的K系数矩阵对应的变量的次方。这个代码我也没写的太好,到更高次通用性不好,但由于写出一个通用性代码太费时间了,就直接拿二次函数和三次函数举例就行,如果你感兴趣,你可以根据规律,构建一个有规律的矩阵,并规律的给它乘上相应的回归得到的系数k,构建出我们最后的决策界限和假设函数原创 2022-10-22 18:55:04 · 1160 阅读 · 1 评论 -
[从0开始机器学习]5.逻辑回归 二分类
# 假设函数# 在逻辑回归中我们设定的假设函数是H=1/(1+e^(-KX))这个值在0-1之间,可以当作概率# 代价函数L=求和((H(x)-y(x))^2),其中H是关于K矩阵中所有系数参数的假设函数#通过最似然估计将代价函数化简变成凸函数,上面图3# 代价函数就是你估算的值与实际值的差的大小,使得代价函数最小,这样就能不断逼近结果# 使得代价函数最小,就要使得初始点在斜率线上不断往低处移动,呈现出系数的不断微小移动# 固定公式格式,推导原理看吴恩达P11原创 2022-10-22 10:40:20 · 289 阅读 · 0 评论 -
[从0开始机器学习]4.线性回归 正规方程
在线性回归中实际就是求代价函数对系数变量求导,导数为0的时候,即代价函数最小的时候,系数矩阵的值。以多元一次函数为例 使用前提:1.X特征数量小于样本数量 2.X矩阵中不存在线性相关的量#正规方程,固定公式详细推导见吴恩达P23机器学习通过文字描述是难以教学学会的,每一节课我会推荐这个理论的网课,一定要看上面的理论视频!一定要看上面的理论视频!一定要看上面的理论视频!所以我只是通过代码实现,并通过注释形式来详细讲述每一步的原因,最后通过画图对比的新式来看结果比较。原创 2022-10-22 10:39:58 · 1176 阅读 · 1 评论 -
[从0开始机器学习]3.一元多次函数线性回归
一元n次线性回归是多元一次线性回归的特殊形式,可以将 多元一次的线性函数中第2个元认为x^2,第3个元认为是x^3.....依次类推,同理,可以写出多元多次的线性回归,当然,下面只写出可以机器学习中调节次方的一元n次线性回归函数的代码。# 代价函数L=求和((H(x)-y(x))^2),其中H是关于K矩阵中所有系数参数的函数# 代价函数就是你估算的值与实际值的差的大小,使得代价函数最小,这样就能不断逼近结果# 使得代价函数最小,就要使得初始点在斜率线上不断往低处移动,呈现出系数的不断微小移动原创 2022-10-22 09:34:49 · 1054 阅读 · 0 评论 -
[从0开始机器学习]2.多元一次函数线性回归
# 假设函数,假设是个多元线性函数,每个参数的系数和常数不知道,是要回归算的变量#返回系数矩阵乘参数矩阵# 代价函数L=求和((H(x)-y(x))^2),其中H是关于K矩阵中所有系数参数的函数# 代价函数就是你估算的值与实际值的差的大小,使得代价函数最小,这样就能不断逼近结果# 使得代价函数最小,就要使得初始点在斜率线上不断往低处移动,呈现出系数的不断微小移动#注意归一化所求的系数矩阵K是(X-U)/S的系数,真正系数,需要将x参数前面的系数合并# 固定公式格式,推导原理看吴恩达P11原创 2022-10-22 09:31:45 · 624 阅读 · 0 评论 -
[从0开始机器学习]1.一元一次函数线性回归
机器学习,监督学习,线性回归;代价函数,迭代;python实现算法;吴恩达机器学习;原创 2022-10-21 12:27:29 · 646 阅读 · 3 评论 -
[基础库Numpy] 技能树总结:一篇文章学会Numpy库
Numpy库常用API简介(1)创建数组#构造法#特殊值法#随机数法#定长分割法#重复构造法#网格构造法(2)操作数组#索引和切片#结构的改变#合并与拆分#复制#排序#查找#筛选 #数组I/O(3)创建矩阵对象#构造法#特殊值法(4)操作矩阵对象#矩阵变换#矩阵运算(5)常用函数#特殊值#函数的命名空间#数学函数#统计函数#一维线性插值#多项式拟合函数#自定义广播函数(6)掩码数组#创建掩码数组#访问数据#访问掩码#仅获取有效值#修改掩码#掩码数组操作原创 2022-10-21 12:13:27 · 740 阅读 · 0 评论 -
【软件基础】pycharm2021.3.2安装汉化和python3.10.1环境配置
如果无法创建python文件说明你的盘没有管理员权限,建议将所有的安装项目文件都不要放在C盘,C盘跟你电脑运行速度息息相关,建议都放在D盘或者E盘,下面显示更改盘权限方法。如果没有上面情况,你创建好项目之后,在左上角文件设置里面,有个项目编译器,里面选择本地编译器并勾选全局编译器就行。右键属性-安全-users-高级-users-编辑-全选-应用。【2】编辑运行配置,路径是自己新建的py文件,点击应用。(4)将你安装好的python.exe文件地址放进去。第一行左边是解释器路径,右边是py文件路径。原创 2022-10-21 12:02:24 · 2249 阅读 · 1 评论