- 博客(35)
- 收藏
- 关注
原创 [Mamba]UltraLight VM-UNet
传统上,为了提高模型的分割性能,大多数方法倾向于添加更复杂的模块。这并不适合医疗领域,尤其是移动医疗设备,由于计算资源的限制,计算负载大的模型不适合真实的临床环境。最近,以曼巴(Mamba)为代表的状态空间模型(SSMs)已成为传统卷积神经网络(CNNs)和 Transformer 的有力竞争对手。在本文中,我们深入探索了曼巴中参数影响的关键因素,并在此基础上提出了 UltraLight 视觉曼巴 UNet(UltraLight VM-UNet)。
2025-06-05 10:16:11
763
原创 [U-Net]DA-TRANSUNET
精确的医学图像分割对疾病定量和治疗评估至关重要。尽管传统的U-Net架构及其集成Transformer的变种在自动分割任务中表现出色,但它们无法充分利用图像的内在位置特征和通道特征。现有模型在参数效率和计算复杂度方面也面临困难,尤其是在广泛使用Transformer的情况下。为了解决这些问题,本研究提出了一种新颖的深度医学图像分割框架——DA-TransUNet,旨在将Transformer和双重注意力块(DA-Block)集成到传统的U形架构中。
2025-04-24 22:31:24
648
原创 [U-Net-Dual]DEU-Net
皮肤病的计算机辅助诊断(CAD)在很大程度上依赖于皮肤病变的自动分割,尽管由于病变在形状、大小、颜色和纹理上的多样性以及与周围组织的潜在模糊边界而呈现出相当大的挑战。在本研究中,我们提出了一种新的U形网络,双编码器U网(DEU-Net),DEU-Net集成了包括卷积编码器和Transformer编码器的双编码器分支,从而便于局部特征和全局上下文信息的同时提取。此外,为了提高DEU-Net的性能,我们采用了一种集成的测试时间增强技术。
2025-04-22 17:28:37
615
原创 [U-Net]CA-Net
医学图像的准确分割是疾病诊断和治疗计划的基础,卷积神经网络(CNN)在医学图像自动分割方面取得了很好的效果,但分割目标的位置、形状和尺度变化很大,现有的CNN具有较差的可解释性,这限制了它们在临床决策中的应用。在这项工作中,我们在CNN架构中广泛使用多个注意力,并提出了一个全面的基于注意力的CNN(CA-Net)为了更准确和可解释的医学图像分割,同时意识到最重要的空间位置,通道和尺度。特别地,我们首先提出了一个联合空间注意力模块,使网络更多地关注前景区域。
2025-04-16 16:00:00
773
原创 [skip]CBAM
我们提出了卷积块注意力模块(CBAM),一个简单而有效的前馈卷积神经网络注意力模块。给定一个中间特征图,我们的模块沿着两个独立的维度(通道和空间)顺序推断注意力图,然后将注意力图乘以输入特征图以进行自适应特征细化。由于CBAM是一个轻量级和通用的模块,它可以无缝集成到任何CNN架构中,开销可以忽略不计,并且可以与基础CNN一起进行端到端的沿着训练。我们通过在ImageNet-1 K,MS COCO检测和VOC 2007检测数据集上进行广泛的实验来验证我们的CBAM。
2025-03-31 21:22:14
1026
原创 [Mamba_6]AC-MAMBASEG
皮肤病变分割是皮肤病计算机辅助诊断系统中的一项关键任务,从医学图像中准确地分割出皮肤病变对早期检测、诊断和治疗计划至关重要。本文提出了一种新的皮肤病变分割模型AC-MambaSeg,它是一种增强的模型,具有混合CNN-Mamba主干,并集成了卷积块注意力模块(CBAM)、注意力门和选择性内核瓶颈等高级组件。AC-MambaSeg利用Vision Mamba框架进行高效的特征提取,而CBAM和选择性核瓶颈增强了其关注信息区域和抑制背景噪声的能力。
2025-03-27 20:16:46
1018
原创 [Mamba_5]MambaU-Lite
皮肤病变的早期检测在诊断和治疗皮肤癌中起着至关重要的作用。使用人工智能驱动的设备对受影响的皮肤区域进行分割是相对常见的,并支持诊断过程。然而,由于需要高分辨率图像和单个病变的边界往往不清楚,实现高性能仍然是一个重大挑战。同时,医疗设备对分割模型的要求是内存占用小、计算成本低。基于这些要求,我们引入了一种新的轻量级模型MambaU-Lite,它结合了Mamba和CNN架构的优势,具有超过40万的参数和超过1G的计算成本。
2025-03-16 11:13:57
731
原创 [U-Net]DCSAU-Net
具有卷积神经网络(CNN)的深度学习架构在计算机视觉领域取得了杰出的成功。其中,由CNN构建的编解码器架构U-Net在生物医学图像分割方面取得了重大突破,并已在广泛的实际场景中得到应用。然而,编码器部分中的每个下采样层的等同设计和简单的堆叠卷积不允许U-Net从不同深度提取足够的特征信息。医学图像复杂度的不断增加给现有的方法带来了新的挑战。在本文中,我们提出了一个更深更紧凑的分裂注意力U形网络(DCSAU-Net),它有效地利用低层次和高层次的语义信息的基础上两个新的框架:主要特征保护和紧凑的分裂注意力块。
2025-02-23 11:47:02
653
原创 [U-Net]SA-UNet
视网膜血管的精确分割对糖尿病、高血压等眼相关疾病的早期诊断具有重要意义。在这项工作中,我们提出了一个名为空间注意力U-Net (SA-UNet)的轻量级网络,它不需要数千个带注释的训练样本,并且可以以数据增强的方式来更有效地利用可用的带注释的样本。SA-UNet引入了一个空间注意模块,该模块沿空间维度推断注意图,并将注意图乘以输入特征图进行自适应特征细化。此外,本文提出的网络采用结构化dropout卷积块代替U-Net的原始卷积块,以防止网络过拟合。
2024-12-11 09:37:19
696
原创 [Code]R2U-Net中的眼部血管分割
这段 Python 代码使用 PyTorch 框架构建了一个类似 U-Net 结构的神经网络模型,叫做Dense_Unet。
2024-11-29 19:29:36
857
原创 [U-Net]BCDU-Net
近年来,基于深度学习的网络在医学图像分割方面取得了最先进的性能。在现有的网络中,U-Net已成功应用于医学图像分割。本文提出了一种U-Net的扩展,即具有密集连接卷积的双向卷积U-Net(BCDU-Net),用于医学图像分割,其中我们充分利用了U-Net、双向卷积TM(BConvLSTM)和密集卷积的机制。我们采用BConvLSTM以非线性方式组合从相应编码路径和之前的解码卷积层中提取的特征图,而不是在U-Net的跳跃连接中进行简单的级联。
2024-11-11 09:31:29
1023
原创 [Code]U-Mamba
这段代码定义了一个自定义的类,结合了上采样(通常是通过插值)和卷积操作。:使用对输入特征图进行上采样操作。参数确定了上采样的倍数,mode参数指定了上采样时使用的插值方法(如nearest,即最近邻插值,或者其他如bilinear等方式)。:上采样之后,通常会应用一个卷积层来进一步处理特征图。这段代码中的卷积层使用了大小为1x1的卷积核,作用是改变通道数(从输入的转换为),同时保持空间尺寸不变。
2024-11-07 16:03:07
1020
原创 [Code]R2u_Net
上采样卷积块 循环块RRCNN和单层卷积块 注意力块U-Net U-Net 神经网络的 前向传播(forward) 函数
2024-11-07 09:28:02
894
原创 [U-Net]R2U-Net
基于深度学习(DL)的语义分割方法在过去几年中一直在提供最先进的性能。更具体地说,这些技术已成功应用于医学图像分类、分割和检测任务。其中,深度学习技术 U-Net 已成为这些应用中最受欢迎的技术之一。本文提出了基于 U-Net 的递归卷积神经网络(RCNN)和基于 U-Net 的递归残差卷积神经网络(RRCNN)模型,并分别命名为 RU-Net 和 R2U-Net。提出的模型利用了 U-Net、残差网络和 RCNN 的强大功能。在分割任务中,这些建议的架构有几个优点。首先,残差单元有助于训练深度架构。
2024-10-29 11:19:38
1220
原创 [Mamba_4]LMa-UNet
在临床实践中,医学图像分割提供了有关目标器官或组织的轮廓和尺寸的有用信息,有助于改进诊断、分析和治疗。在过去的几年里,卷积神经网络(cnn)和Transformers占据了这一领域的主导地位,但它们仍然受到有限的接受域和昂贵的远程建模的困扰。Mamba,一种状态空间序列模型(SSM),最近作为具有线性复杂性的远程依赖建模的一个有前途的范例出现。在本文中,我们引入了一种用于医学图像分割的大核视觉曼巴u形网络(LKM-UNet)。
2024-09-16 20:53:41
1329
原创 [Mamba_3]Swin-UMamba
准确的医学图像分割需要融合多尺度信息,从局部特征到全局依赖关系。然而,卷积神经网络(cnn)受局部感受野的限制,视觉变换(vit)的注意机制具有较高的二次复杂度,这对现有的远程全局信息建模方法提出了挑战。近年来,基于曼巴的模型以其令人印象深刻的长序列建模能力而受到广泛关注。一些研究表明,这些模型可以在各种任务中优于流行的视觉模型,提供更高的准确性,更低的内存消耗和更少的计算负担。然而,现有的基于mamba的模型大多是从头开始训练,没有探索预训练的力量,预训练已被证明对数据高效的医学图像分析非常有效。
2024-09-07 21:00:28
1036
原创 [Mamba_2]VM-Mamba
在医学图像分割领域,基于cnn和基于transformer的模型都得到了广泛的探索。然而,cnn在远程建模能力方面表现出局限性,而transformer则受到二次计算复杂性的阻碍。最近,以Mamba为例的状态空间模型(SSMs)作为一种很有前途的方法出现了。它们不仅在远程相互作用建模方面表现优异,而且保持了线性计算复杂度。本文利用状态空间模型,提出了一种用于医学图像分割的Ushape架构模型,命名为视觉曼巴UNet (VM-UNet)。
2024-09-04 16:41:34
836
原创 [Mamba_1]U-Mamba
卷积神经网络(Convolutional Neural Networks, cnn)和transformer是生物医学图像分割中最流行的架构,但由于固有的局部性或计算复杂性,它们处理远程依赖关系的能力有限。为了解决这一挑战,我们引入了U-Mamba,一个通用的生物医学图像分割网络。受状态空间序列模型(ssm)的启发,我们设计了一个混合CNN-SSM块,它将卷积层的局部特征提取能力与ssm捕获远程依赖的能力相结合。状态空间序列模型是一种以处理长序列的强大能力而闻名的新型深度序列模型。
2024-08-11 16:52:22
1304
原创 【论文10】复现代码tips
这个注意力机制块通过计算输入特征图与类别相关的注意力权重,然后将这些权重应用于原始输入特征图,以生成增强的特征表示。进行模型的训练,具体来说,它定义了一个训练循环,该循环会遍历指定数量的训练周期(epochs),在每个周期内,它会处理训练数据集,通过模型进行预测,计算损失,并使用优化器更新模型的权重。函数是一个辅助函数,用于加载并可能转换图像文件的格式(在这个例子中,它总是将图像转换为RGB模式,但如果图像已经是RGB模式,则不会改变)。),得到每个特征图的全局最大值,这些值代表了特征图中最显著的特征。
2024-07-27 20:40:25
2144
原创 阅读论文(十)
糖尿病视网膜病变(DR)是糖尿病的一种严重的眼部并发症,可导致视力损害甚至失明。目前,传统的深度卷积神经网络(CNN)用于DR分级任务面临两个主要挑战:1)由于数据分布不平衡,对少数类不敏感2)由于只使用一只眼睛的眼底图像进行训练,忽略了左右眼之间的关系,没有区分左右眼。为了应对这些挑战,我们提出了DRGCNN (DR Grading CNN)模型。为了解决数据分布不平衡所带来的问题,我们的模型采用了一种更平衡的策略,将相同数量的通道分配给代表不同DR类别的特征映射。
2024-06-07 11:38:43
814
原创 阅读论文(九)
糖尿病性视网膜病变Diabetic retinopathy (DR)是导致人群失明的主要原因,自动DR诊断包括DR分级和病变发现,现有的大多数方法都将DR分级和病变发现视为两个独立的任务,这需要病变注释作为学习指导,并限制了实际部署。论文提出了基于病变感知的transformer(LAT),用于通过包括基于像素关系的编码器和基于病变滤波器的解码器的编码器--解码器结构,在统一的深度模型中共同进行DR分级和病变发现。LAT包括编码器和解码器。编码器:建立像素关系;解码器:病变滤波器。
2024-05-23 21:38:24
965
1
原创 阅读论文(八)
0摘要论文题目:中文题目:通过眼底图像进行基于病灶的糖尿病视网膜病变分级对比学习0摘要手动标注医学图像是非常昂贵的,特别是对于大规模数据集。自监督对比学习已被用于从未标记的图像中学习特征表示。然而,与自然图像不同,对比学习在医学图像中的应用相对有限。在这项工作中,我们提出了一个自我监督框架,即基于病变的对比学习,用于糖尿病视网膜病变(DR)自动分级。在常见的对比学习方案中,病灶斑块不是以整个图像作为输入,而是使用病灶斑块来鼓励特征提取器学习具有高度判别性的表征来进行DR分级。
2024-05-22 16:43:39
984
原创 阅读论文(七)
糖尿病视网膜病变(DR)的早期检测和治疗可大大降低患者视力丧失的风险。从本质上讲,我们面临着两个挑战:(i) 如何同时实现来自不同领域的领域适应;(ii) 如何在端到端框架中建立目标领域的可解释多实例学习(MIL)。在本文中,我们针对这些问题提出了一个统一的弱监督领域适应框架,该框架由三个部分组成:领域适应、实例渐进判别器和多实例注意学习。该方法利用多实例学习方案和注意机制对目标域的图像和图像之间的关系进行建模。同时,它结合了源域和目标域的所有可用信息,形成了一个联合学习策略。
2024-05-10 10:33:09
1214
1
原创 阅读论文(四)
糖尿病视网膜病变(DR)数据集存在的一些问题:主要是病变区域小和各种等级类别数据量分布不均(分布不均导致网络注重数量多的分类级,而忽视数量少的分类级),如下两图所示,眼底照图片表面病变区域小、饼图表示在三个主要数据集上的分类等级不均,其中0和2类数据集多,1、3、4类少一、问题的提出。
2024-04-24 16:09:34
1000
原创 阅读论文(六)
深度神经网络(DNN)促进了眼底疾病计算机辅助诊断(CAD)系统的发展,帮助眼科医生减少漏诊和误诊率。然而,大多数计算机辅助诊断系统都是数据驱动型的,缺乏对性能有利的先验医学知识。为此,我们利用眼科医生的眼球跟踪信息,创新性地提出了 人机协同human-in-the-loop (HITL)CAD 系统。具体来说,HITL CAD 系统是在多实例学习(MIL)的基础上实现的,临床医生的注视图有利于挑选与诊断相关的实例。此外,还利用双交叉注意 MIL(DCAMIL)网络来抑制噪声实例的不利影响。
2024-04-17 22:23:04
1134
1
原创 阅读论文(五)
提出了显著性引导自监督图像转换器(SSiT)用于糖尿病视网膜病变(DR)眼底图像的分级。引入自监督学习(Self-supervised Learning, SSL),目的是指导具有特定领域先验知识的自监督预训练。具体而言,SSiT采用了两个显著性引导学习任务:(1)基于动量对比进行显著性引导对比学习,利用眼底图像的显著性映射从动量更新的密钥编码器输入序列中去除琐碎的patch。因此,密钥编码器被限制为提供关注显著区域的目标表示,指导查询编码器捕获显著特征。
2024-04-10 16:49:17
641
1
原创 阅读论文(三)
糖尿病性视网膜病变(DR)和糖尿病性黄斑水肿(DME)是导致劳动年龄人口永久性失明的主要原因。DR和DME的自动分级有助于眼科医生为患者设计量身定制的治疗方案,因此在临床实践中至关重要。然而,以往的研究要么对DR进行分级,要么对DME进行分级,而忽略了DR与其并发症,即忽略了DR与DME之间的相关性。此外,位置信息,如黄斑和软硬排气注释,被广泛用作分级的首要条件。这样的注释需要付出很高的成本,因此开发仅基于图像级别监督的自动分级方法是可取的。在这篇论文中,我们提出了一种新颖的跨疾病注意网络(CANet)
2024-03-21 16:15:50
1102
2
原创 阅读论文(二)
本文提出了一种新的基于单一模型的策略,用于小数据集和不平衡数据集的皮肤病变分类。首先,在不同的小型和不平衡数据集上训练各种DCNNs,以验证中等复杂性的模型优于较大的模型。其次,通过加入正则化DropOut和DropBlock来减少过拟合,并提出一种改进的RandAugment增强策略来解决小数据集中样本代表性不足的缺陷;最后,引入了一种新的多加权新损失(MWNL)函数和端到端累积学习策略(CLS),克服了样本大小和分类难度不均的挑战,减少了异常样本对训练的影响。
2024-03-15 10:45:13
848
原创 PyTorch深度学习框架(二)
定义了一个基于 PyTorch Dataset 类的自定义数据集,该数据集可以被用于加载图像数据并返回图像及其对应的标签。创建了两个数据集对象 ants_dataset 和 bees_dataset,分别用于加载“ants”和“bees”类别的图像数据。每个数据集对象都可以用于访问对应类别的图像数据。先建立ants和bees的标签文件分别为ants_label和bees_label,在ants_label里面创建一个名字为原图片名称.txt的文件,里面内容为ants,之后运行上述代码,即可生成以下结果。
2024-03-07 15:49:36
341
原创 PyTorch深度学习框架(一)
默认的环境是base,想要进入虚拟环境pytorch中。2.安装pytorch 应该以管理员的身份进入cmd。5.在pycharm中新建项目时,先修改环境解释器。文中图片中的水印“爱学习的小凶许”是我的知乎号。anaconda是python的包管理工具。1.检查安装anaconda 打开cmd。3.检查创建的虚拟环境。4.安装pycharm。查看conda 版本。
2024-03-05 15:02:26
218
原创 阅读论文(一)
这篇文章试图复制2016年JAMA上发表的用于检测视网膜眼底照片中的糖尿病视网膜病变的深度学习算法的开发和验证中的主要方法。最初的研究使用来自EyePACS和印度三家医院的非公开眼底图像进行培训。本文使用了来自Kaggle的不同的EyePACS数据集。原始研究使用基准数据集Messidor-2来评估算法的性能。本文使用相同的数据集。在最初的研究中,眼科医生对糖尿病视网膜病变、黄斑水肿和图像分级进行了重新分级。在我们的数据集中,每张图像有一个糖尿病视网膜病变分级,我们自己评估图像的可分级性。
2024-02-29 19:54:22
895
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人