阅读论文(十)

本文提出了一种名为DRGCNN的糖尿病视网膜病变(DR)智能诊断和分级模型,以解决数据不平衡和双眼关系利用不足的问题。DRGCNN采用类别注意模块(CAM)和双眼特征融合网络(BFFN),在EyePACS和Messidor-2数据集上表现出优于现有方法的性能,kappa值分别达到86.62%和86.16%。
摘要由CSDN通过智能技术生成

论文题目:A novel approach for intelligent diagnosis and grading of 
diabetic retinopathy 

中文题目:一种新的糖尿病视网膜病变智能诊断和分级方法

0摘要

糖尿病视网膜病变(DR)是糖尿病的一种严重的眼部并发症,可导致视力损害甚至失明。目前,传统的深度卷积神经网络(CNN)用于DR分级任务面临两个主要挑战:

1)由于数据分布不平衡,对少数类不敏感

2)由于只使用一只眼睛的眼底图像进行训练,忽略了左右眼之间的关系,没有区分左右眼。

为了应对这些挑战,我们提出了DRGCNN (DR Grading CNN)模型。为了解决数据分布不平衡所带来的问题,我们的模型采用了一种更平衡的策略,将相同数量的通道分配给代表不同DR类别的特征映射。此外,我们引入了CAM-EfficientNetV2-M编码器,专门用于编码输入的视网膜眼底图像以生成特征向量。我们编码器的参数个数为52.88 M,比regnety_16gf (80.57 M)和EfficientNetB7 (63.79 M)少,但对应的kappa值更高。此外,为了利用双眼关系,我们在训练阶段将患者双眼眼底视网膜图像输入到网络中进行特征融合。EyePACS数据集的kappa值为86.62%,Messidor-2数据集的kappa值为86.16%。在这些具有代表性的糖尿病视网膜病变(DR)数据集上的实验结果证明了我们的DRGCNN模型的卓越性能,使其成为DR领域中极具竞争力的智能分类模型。

1介绍

糖尿病视网膜病变(DR)是一种常见的糖尿病慢性并发症,是全球范围内视力损害的主要原因。根据《国际糖尿病视网膜疾病分类标准》,DR可分为无DR、轻度DR、中度DR、重度DR和增生性DR。全球有非常多的糖尿病病例,并且这些糖尿病患者很大可能会在2040年患上糖尿病视网膜类的疾病。在临床诊断中,DR的筛查很大程度上依赖于眼科医生的临床经验。然而,眼科医生严重短缺,特别是在农村地区。随着糖尿病患者数量的不断增加,现有医疗基础设施的压力逐渐增大。医学指南强烈建议糖尿病患者定期进行眼底检查。但是,这些检查显然没有按规定的时间间隔进行。因此,许多病例直到疾病发展到严重阶段才被发现。以深度学习为驱动的智能DR分级提供了一个很有前途的解决方案。它不仅提高了筛查效率,而且辅助医生进行诊断,降低了医疗资源的利用率,提高了患者的健康水平的准确诊断,便于大规模筛查。这些方法在预防失明方面具有很大的潜力。为了减轻眼科医生的工作量、加快检测速度并为患者提供及时的干预措施,推动了 DR 智能诊断方法的发展。

基于视网膜眼底图像分析的深度学习的有效性受到训练数据特征的强烈影响。我们工作的一个重大挑战是在当前数据集中发现的相当大的类别不平衡,再加上存在小而复杂的病变特征,如图1所示。

在EyePACS数据集中,正常眼底图像(0级)占总图像的73%,而增生性糖尿病视网膜病变(PDR)的眼底图像仅占2%。在网络训练过程中,这种不平衡的数据分布往往会使大多数类过重,从而影响最终的评分性能。

值得注意的是,在EyePACS数据集和Messidor-2数据集中,患者两眼之间的一些眼底图像的质量是不同的(如图2所示)

这可能会导致具有相同分级标签的患者的左眼和右眼图像由于图像质量差而被划分为不同的等级。同时,统计数据表明,超过95%的双眼得分相差最大为1,这凸显了利用双眼关系提高评分性能的宝贵潜力。因此,我们使用成对眼睛的图像进行训练,使质量较差的图像可以利用质量较好的图像中的信息作为补充。

2相关工作

在20世纪90年代,糖尿病视网膜病变(DR)的评估主要是由经验丰富的眼科医生根据眼底视网膜图像对疾病进行手动分级。在此期间,研究重点是改进用于捕获视网膜图像的成像设备,而不是开发先进的分级方法。在自动DR检测方面的早期贡献包括Roychowdhury等人[9],他们引入了一种自动DR检测的三阶段算法。该算法采用多种分类器,如支持向量机(SVM)[10]和k近邻(KNN)[11],并提取面积和图像方差等30维特征。过渡到目前的方法,早期的方法的缺点是清楚地揭示出来。这些方法与高维数据、不充分的模型表示和复杂的非线性问题作斗争。他们对人工特征工程的依赖常常受到特征选择的限制。近年来,深度学习在医学成像领域有了快速发展,尤其是卷积神经网络(CNN)的应用。这些网络备受关注,已被证明是自动 DR 分类的强大工具。CNN 已证明其有能力从数据中学习复杂的特征,通过多层非线性变换进行导航,并且无需人工特征设计。

目前基于视网膜眼底图像的DR分级方法大致可分为两种不同的方法:

(1)病灶提取和分级。这种方法侧重于识别特定的DR病变,如微动脉瘤、渗出物和新生血管。例如,Hatanaka等[17]设计了一种双环滤波器来提取微动脉瘤特征。然而,这种方法需要精确的滤波器选择来达到预期的结果。Habib等[18]采用了基于分类的策略,该策略涉及人工特征提取和复杂背景分离。

(2)端到端DR筛选分级。在这个类别中,卷积神经网络模型在注释数据集上进行训练,以实现DR筛选或疾病严重程度分级。Gwenol’e Quellec等[19]利用convnet输出梯度生成病灶热图进行定位,无需手动标注。然而,更详细的定位需要额外的人工分割,如新生血管。朱磊等[20]提出了基于ResNet的DR与糖尿病性黄斑水肿(DME)联合分级的跨疾病注意力网络(CANet)。他们仅使用图像级监测来探索疾病之间的内在关系。从ResNet网络的最后一个卷积层提取的特征输入到每种疾病对应的疾病特异性关注模块中。然后使用融合的特征图来获得每种疾病的分类结果。这种方法有效地利用了不同疾病之间的相关性,但忽略了不平衡数据集的影响。He等人[21]提出了一种用于糖尿病视网膜病变(DR)分级的CABNet网络,该网络在池化层之前纳入了空间和通道关注。值得注意的是,他们提出了一种新的分类注意机制。这种方法有效地缓解了数据不平衡的问题。然而,它没有考虑到数据集中高度相关的双目关系。Huang等人[22]对ResNet-50架构中的关键组件进行了探索。他们全面分析了各个模块对网络的影响,考虑了分辨率、损失函数、优化器和采样策略等方面对模型性能的影响。此外,他们还引入了一个配对的左右眼模块,有效地整合了左右眼视网膜图像的特征。然而,他们的研究只关注ResNet-50架构,并没有设计一个专门的模块来解决数据不平衡问题。

3方法

3.1. DRGCNN概述

在本节中,详细描述了提出的用于DR分级的两阶段DRGCNN(糖尿病视网膜病变分级卷积神经网络)。

图3说明了模型的主要工作流程,它由两个主要组件组成。第一个组件是编码器(CAM-EfficientNetV2-M),它将E

  • 24
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值