输入:维度索引(所有);
输出:交换维度之后的张量。
功能:可以同时多次交换Tensor的维度
举例:b = a.permute(0, 2 ,1)表示,a是一个3维的Tensor,将a的维度索引1和维度索引2交换位置,而维度索引0表示不变。
import torch
a=torch.rand(1,2,3,4)
print(a)
b=a.permute(3,0,2,1)
print(b)
print(b.shape)
输出:
tensor([[[[0.0564, 0.3929, 0.3702, 0.3258],
[0.3509, 0.8068, 0.8201, 0.1457],
[0.1383, 0.2084, 0.6474, 0.3917]],
[[0.8784, 0.3841, 0.7031, 0.3566],
[0.0505, 0.1398, 0.8103, 0.3775],
[0.5874, 0.8171, 0.4946, 0.4990]]]])
tensor([[[[0.0564, 0.8784],
[0.3509, 0.0505],
[0.1383, 0.5874]]],
[[[0.3929, 0.3841],
[0.8068, 0.1398],
[0.2084, 0.8171]]],
[[[0.3702, 0.7031],
[0.8201, 0.8103],
[0.6474, 0.4946]]],
[[[0.3258, 0.3566],
[0.1457, 0.3775],
[0.3917, 0.4990]]]])
torch.Size([4, 1, 3, 2])
这里张量a的size为(1,2,3,4),经过b=a.permute(3,0,2,1)之后变成了size(4,1,3,2)。