目录
1.线性表的定义
线性表(Linear List):是具有相同特性的数据元素的一个有限序列。一些基本术语如下:
例如:26个英文字母组成的线性表(A,B...Z),数据元素都是字母,元素之间都是线性。
同一线性表中的元素必定具有相同特性,数据元素间的关系是线性关系。
线性表的逻辑特征是:
(1)在非空的线性表,有且仅有一个开始结点a_1,它没有直接前趋而仅有一个直接后继a_2;
(2)有且仅有一个终端结点a_n,它没有直接后继,而仅有一个直接前趋a_(n-1);
(3)其余的内部结点a_i(2≤i≤n-1)都有且仅有一个直接前趋a_(i-1)和一个直接后继a_(i+1);
线性表是一种典型的线性结构。
2.一些案例
案例1:一元多项式的运算
案例2:稀疏多项式,如果用案例1的方法会造成大量的资源浪费,怎么处理?
线性表中数据元素为数组,数组第一个元素为系数,第二个元素为x的幂指数。
这时执行两个多项式相加的运算,有以下几步:
(1)创建一个新数组c;
(2)分别从头遍历比较a和b的每一项:
指数相同,对应系数相加,若其和不为零,则在c中增加一个新项;
指数不相同,则将指数较小的项复制到c中;
(3)一个多项式已遍历完毕时,将另一个剩余项依次复制到c中即可;
这样采用的顺序存储结构存在问题:存储空间不灵活,空间复杂度高;
为此,我们可以采用链式存储结构(-1表示头结点),下面的过程演示怎么用链式存储结构计算多项式的和:
案例3:图书管理系统,可以采用顺序表或者链表
3.线性表的抽象数据类型定义和基本操作
基本操作:
(1)InitList(&L)
操作结果:构造一个空的线性表;
(2)DestroyList(&L)
初始条件:线性表已经存在;操作结果:销毁线性表;
(3)ClearList(&L)
初始条件:线性表已经存在;操作结果:线性表重置为空表;
(4)ListEmpty(L) //验证线性表是否为空
初始条件:线性表L已经存在;操作结果:若线性表L为空表,则返回TURE;否则返回FALSE。
(5)ListLength(L) //返回线性表的长度
初始条件:线性表L已经存在;操作结果:返回线性表L中的数据元素个数。
(6)GetElem(L,i,&e) //读取线性表中指定位置的元素
初始条件:线性表L已经存在,1<=i<=ListLength(L);
操作结果:用e返回线性表L中第i个数据元素的值;
(7)LocateElem(L,e,compare()) //返回指定条件的元素位置
初始条件:线性表L已经存在,compare()是数据元素判定函数。
操作结果:返回L中第1个与e满足compare()的数据元素的位序。若这样的数据元素不存在则返回值为0。
(8)PriorElem(L,cur_e,&pre_e) //求一个元素的前驱
初始条件:线性表L已经存在。
操作结果:若cur_e是L的数据元素,且不是第一个,,则用pre_e返回它的前驱;否则操作失败,pre_e无意义。
(9)NextElem(L,cur_e,&next_e) //求一个元素的后继
初始条件:线性表L已经存在。
操作结果:若cur_e是L的数据元素,且不是最后一个,则用next_e返回它的后继;否则操作失败, next_e无意义。
(10)ListInsert(&L,i, e) //插入一个元素
初始条件:线性表L已经存在,1<=i<= ListLength(L)+1。
操作结果:在L的第i个位置之前插入新的数据元素e, L的长度加一。
操作前(长度为n):;
操作后(长度为n+1):
(11)ListDelete(&L,i,&e) //删除一个元素
初始条件:线性表L已经存在,1<=i<= ListLength(L)
操作结果:删除L的第i个数据元素,并用e返回其值,L的长度减一。
删除前(长度为n) :
删除后(长度为n -1) :
(12)ListTraverse(&L, visited()) //线性表的遍历
初始条件:线性表L已经存在
操作结果:依次对线性表中每个元素调用visited()
以上所提及的运算是逻辑结构上定义的运算只要给出这些运算的功能是"做什么",至于"如何做"等实现细节,只有待确定了存储结构之后才考虑。
后续课程中将学习线性表的存储及在存储结构上各操作的实现。详见: