编程二:包子凑数
题目描述
小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有 N 种蒸笼,其中第 i 种蒸笼恰好能放 A_i 个包子。每种蒸笼都有非常多笼,可以认为是无限笼。
每当有顾客想买 X 个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有 X 个包子。比如一共有 3 种蒸笼,分别能放 3、4 和 5 个包子。当顾客想买 11 个包子时,大叔就会选 2 笼 3 个的再加 1 笼 5 个的(也可能选出 1 笼 3 个的再加 2 笼 4 个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有 3 种蒸笼,分别能放 4、5 和 6 个包子。而顾客想买 7 个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入描述
第一行包含一个整数 N (1≤N≤100)。
以下 N 行每行包含一个整数 A_i (1≤Ai≤100)。
输出描述
一个整数代表答案。如果凑不出的数目有无限多个,输出 INF。
输入输出样例
输入1:
2
4
5
输出1:
6
凑不出的数目包括:1, 2, 3, 6, 7, 11
输入2:
2
4
6
输出2:
INF
所有奇数都凑不出来,所以有无限多个。
思路
这道题主要是对裴蜀定理的应用。
裴蜀定理:
对任意整数a
,b
且gcd(a, b)=d
,那么对于任意不全为0的整数x
,y
,都有a*x + b*y = m*d (m为不为0的整数)
。
有了以上定理,我们就可以得到,若两个整数a
,b
的最小公约数为1
,即这两个数互质,那么一定存在整数x
,y
使得a*x + b*y
能够得到它们最小公约数d
的整数倍。这个定理也可以扩展到对于n个整数的情况中。
应用到这道题目中,也就是说,除了小于这n
个蒸笼中最少的包子数ai
的包子凑不出来以外,若这n
个蒸笼中的包子数互质,那么可以得到,它们一定凑出它们的最小公约数1
的m
倍,即它们的最大公约数为1
的情况下,它们凑不出的数目显然是有限的,即凑数的过程中,出现“空隙”的数量是有限的。反之,则凑不出的数目是无限的。
若a,b互质,则凑不出的数最大为:a*b-a+b。--》这道题:100*100-200=9800
否则,若不互质,有无限个C导致无解。即输出INF。
代码实现:
#include <iostream>
using namespace std;
int n,g;
int a[101]={0};
bool f[10000];//i能被凑出f[i]=true;
//求最大公约数
int gcd(int a,int b){
if(b==0)return a;
return gcd(b,a%b);
}
int main()
{
cin>>n;
f[0]=true;
for(int i=1;i<=n;i++){
cin>>a[i];
if(i==1) g=a[1];//初始化最大公约数
else g=gcd(a[i],g);
//每输入一个数,重新标记一下f数组
for(int j=0;j<10000;j++){
if(f[j])f[j+a[i]]=true;
}
}
if(g!=1){
cout<<"INF"<<endl;
return 0;
}
//统计个数
int ans=0;
for(int i=0;i<10000;i++){
if(!f[i]){
ans++;
// cout<<i<<endl;
}
}
cout<<ans<<endl;
return 0;
}
编程三:分巧克力
题目描述
儿童节那天有 K 位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 N 块巧克力,其中第 i 块是 Hi×Wi 的方格组成的长方形。为了公平起见,
小明需要从这 N 块巧克力中切出 K 块巧克力分给小朋友们。切出的巧克力需要满足:
-
形状是正方形,边长是整数; 2. 大小相同;
例如: 一块 6x5 的巧克力可以切出 6 块 2x2 的巧克力或者 2 块 3x3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?
输入描述
第一行包含两个整数 N,K (1≤N,K≤100000)。
以下 N 行每行包含两个整数 Hi,Wi (1≤Hi,Wi≤100000)。
输入保证每位小朋友至少能获得一块 1x1 的巧克力。
输出描述
输出切出的正方形巧克力最大可能的边长。
输入输出样例
示例
输入:
2 10
6 5
5 6
输出:
2
CPU<1s (一般规模到10^8都不行了)
思路 (注意:100000*100000就会超过1s)暴力枚举会超时
二分。这道题是二分判断可行解的应用。题目本是求一个最优解的问题,但是可以用二分来枚举巧克力的边长值,判断这个边长值能够分出多少块巧克力,根据分出的巧克力数量是大于还是小于小朋友的数量来进行二分,从而不断向最优解靠拢,最终查找到最优解。
代码实现:
#include <iostream>
using namespace std;
int main()
{
int n,k;
int h[100000],w[100000];
cin>>n>>k;
for(int i=0;i<n;i++)
cin>>h[i]>>w[i];
int r=100000;
int l=1;
int ans=0;
while(l<=r){
int mid=(l+r)/2;
int cnt=0;//块数
for(int i=0;i<n;i++){
cnt+=(h[i]/mid)*(w[i]/mid);
}
if(cnt>=k){
l=mid+1;
ans=mid;
}else{
r=mid-1;
}
}
cout<<ans<<endl;
return 0;
}
编程四:K倍区间
题目描述
给定一个长度为 N 的数列,A1,A2,⋯AN,如果其中一段连续的子序列 Ai,Ai+1,⋯Aj ( i≤j ) 之和是 K的倍数,我们就称这个区间 [i,j] 是 K 倍区间。
你能求出数列中总共有多少个 K 倍区间吗?
输入描述
第一行包含两个整数 N 和 K(1≤N,K≤100000 )。
以下 N 行每行包含一个整数 Ai ( 1≤Ai≤100000 )
输出描述
输出一个整数,代表 K 倍区间的数目。
输入输出样例
示例
输入:
5 2
1
2
3
4
5
输出:
6
运行限制
- 最大运行时间:2s ===》暴力枚举不可取
- 最大运行内存: 256M
思路
前缀和。前缀和是处理连续区间问题的利器。用O(1)时间得出区间和
此题先用前缀和预处理后,把前n个数的前缀和s[n]对k取模,并用一个cnt
数组统计前缀和中对k取模后的结果相同的个数。
首先,对于区间[l, r]
,若(s[r]-s[l-1])%k = 0
(区间和为k的倍数即区间和对k取模为0),则说明区间[l,r]
是一个满足条件的区间,而上述等式又可以转化为s[r]%k = s[l-1]%k
,也就是找%k后结果相同的区间个数,利用组合数公式计算能够组成多少个区间即可。(因为任意两个同余的数之差等于模的倍数)
比如样例中:
前1个数的和取模得1,则记录下取模得1的区间数变为1。
前2个数的和取模得1,则取模得1区间数变为2。
前3个数的和取模得0,则取模得0区间数变为1。
以此类推,得到取模结果依次为1 1 0 0 1
。
可以用组合数公式计算出符合题目结果的区间数量为4。
代码实现:
#include <iostream>
#include <map>
using namespace std;
map<int,int> cnt;//同余个数统计
int a[100010];
int s[100010];//前缀和
int main()
{
int n,k;
cin>>n>>k;
s[0]=0;
cnt[0]=1;//因为s[0]=0%k一定为0
for(int i=1;i<=n;i++){
cin>>a[i];
s[i]=(s[i-1]+a[i])%k;//生成前缀和后求余
cnt[s[i]]++;
}
long long ans=0;
for(int i=0;i<k;i++){//余数必然在0到k-1之间
ans+=(long long)cnt[i]*(cnt[i]-1)/2;//防止越界
//例如,cnt[i]=3,则共有组合C32=3
}
cout<<ans<<endl;
return 0;
}