2022-1-19

编程二:包子凑数

题目描述

小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有 N 种蒸笼,其中第 i 种蒸笼恰好能放 A_i​ 个包子。每种蒸笼都有非常多笼,可以认为是无限笼。

每当有顾客想买 X 个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有 X 个包子。比如一共有 3 种蒸笼,分别能放 3、4 和 5 个包子。当顾客想买 11 个包子时,大叔就会选 2 笼 3 个的再加 1 笼 5 个的(也可能选出 1 笼 3 个的再加 2 笼 4 个的)。

当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有 3 种蒸笼,分别能放 4、5 和 6 个包子。而顾客想买 7 个包子时,大叔就凑不出来了。

小明想知道一共有多少种数目是包子大叔凑不出来的

输入描述

第一行包含一个整数 N (1≤N≤100)。

以下 N 行每行包含一个整数 A_i (1≤Ai​≤100)。

输出描述

一个整数代表答案。如果凑不出的数目有无限多个,输出 INF。

输入输出样例

输入1:

2
4
5

输出1:

6

凑不出的数目包括:1, 2, 3, 6, 7, 11

输入2:

2
4
6

输出2:

INF

所有奇数都凑不出来,所以有无限多个。

思路

这道题主要是对裴蜀定理的应用。
裴蜀定理:
对任意整数a,bgcd(a, b)=d,那么对于任意不全为0的整数x,y,都有a*x + b*y = m*d (m为不为0的整数)
有了以上定理,我们就可以得到,若两个整数a,b的最小公约数为1,即这两个数互质,那么一定存在整数x,y使得a*x + b*y能够得到它们最小公约数d的整数倍。这个定理也可以扩展到对于n个整数的情况中。
应用到这道题目中,也就是说,除了小于这n个蒸笼中最少的包子数ai的包子凑不出来以外,若这n个蒸笼中的包子数互质,那么可以得到,它们一定凑出它们的最小公约数1m倍,即它们的最大公约数为1的情况下,它们凑不出的数目显然是有限的,即凑数的过程中,出现“空隙”的数量是有限的。反之,则凑不出的数目是无限的。

若a,b互质,则凑不出的数最大为:a*b-a+b。--》这道题:100*100-200=9800

否则,若不互质,有无限个C导致无解。即输出INF。

 

 代码实现:

#include <iostream>
using namespace std;
int n,g;
int a[101]={0};
bool f[10000];//i能被凑出f[i]=true;
//求最大公约数
int gcd(int a,int b){
    if(b==0)return a;
    return gcd(b,a%b);
}
int main()
{
    cin>>n;
    f[0]=true;
    for(int i=1;i<=n;i++){
        cin>>a[i];

        if(i==1) g=a[1];//初始化最大公约数
        else g=gcd(a[i],g); 
        //每输入一个数,重新标记一下f数组
        for(int j=0;j<10000;j++){
           if(f[j])f[j+a[i]]=true;
        }
    }
    if(g!=1){
        cout<<"INF"<<endl;
        return 0;
    }
    //统计个数
    int ans=0;
    for(int i=0;i<10000;i++){
        if(!f[i]){
            ans++;
            // cout<<i<<endl;
        }
    }
    cout<<ans<<endl;
    return 0;
}

编程三:分巧克力

题目描述

儿童节那天有 K 位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。

小明一共有 N 块巧克力,其中第 i 块是 Hi​×Wi 的方格组成的长方形。为了公平起见,

小明需要从这 N 块巧克力中切出 K 块巧克力分给小朋友们。切出的巧克力需要满足:

  1. 形状是正方形,边长是整数;          2. 大小相同;

例如: 一块 6x5 的巧克力可以切出 6 块 2x2 的巧克力或者 2 块 3x3 的巧克力。

当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?

输入描述

第一行包含两个整数 N,K (1≤N,K≤100000)。

以下 N 行每行包含两个整数 Hi​,Wi​ (1≤Hi​,Wi​≤100000)。

输入保证每位小朋友至少能获得一块 1x1 的巧克力。

输出描述

输出切出的正方形巧克力最大可能的边长。

输入输出样例

示例

输入:

2 10
6 5
5 6

输出: 

2

 CPU<1s      (一般规模到10^8都不行了)                

思路   (注意:100000*100000就会超过1s)暴力枚举会超时

二分。这道题是二分判断可行解的应用。题目本是求一个最优解的问题,但是可以用二分来枚举巧克力的边长值,判断这个边长值能够分出多少块巧克力,根据分出的巧克力数量是大于还是小于小朋友的数量来进行二分,从而不断向最优解靠拢,最终查找到最优解。

代码实现:

#include <iostream>
using namespace std;

int main()
{
    int n,k;
    int h[100000],w[100000];
    cin>>n>>k;
    for(int i=0;i<n;i++)
        cin>>h[i]>>w[i];
    int r=100000;
    int l=1;
    int ans=0;
    while(l<=r){
        int mid=(l+r)/2;
        int cnt=0;//块数
        for(int i=0;i<n;i++){
            cnt+=(h[i]/mid)*(w[i]/mid);
        }
        if(cnt>=k){
            l=mid+1;
            ans=mid;
        }else{
            r=mid-1;
        }
    }
    cout<<ans<<endl;
    return 0;
}

编程四:K倍区间

题目描述

给定一个长度为 N 的数列,A1​,A2​,⋯AN​,如果其中一段连续的子序列 Ai​,Ai​+1,⋯Aj​ ( i≤j ) 之和是 K的倍数,我们就称这个区间 [i,j] 是 K 倍区间。

你能求出数列中总共有多少个 K 倍区间吗?

输入描述

第一行包含两个整数 N 和 K(1≤N,K≤100000 )。

以下 N 行每行包含一个整数 Ai​ ( 1≤Ai​≤100000 )

输出描述

输出一个整数,代表 K 倍区间的数目。

输入输出样例

示例

输入:

5 2
1
2
3
4
5

输出: 

6

运行限制

  • 最大运行时间:2s  ===》暴力枚举不可取
  • 最大运行内存: 256M

思路

前缀和。前缀和是处理连续区间问题的利器用O(1)时间得出区间和
此题先用前缀和预处理后,把前n个数的前缀和s[n]对k取模,并用一个cnt数组统计前缀和中对k取模后的结果相同的个数。
首先,对于区间[l, r],若(s[r]-s[l-1])%k = 0(区间和为k的倍数即区间和对k取模为0),则说明区间[l,r]是一个满足条件的区间,而上述等式又可以转化为s[r]%k = s[l-1]%k,也就是找%k后结果相同的区间个数,利用组合数公式计算能够组成多少个区间即可。(因为任意两个同余的数之差等于模的倍数)
比如样例中:
前1个数的和取模得1,则记录下取模得1的区间数变为1。
前2个数的和取模得1,则取模得1区间数变为2。
前3个数的和取模得0,则取模得0区间数变为1。
以此类推,得到取模结果依次为1 1 0 0 1
可以用组合数公式计算出符合题目结果的区间数量为4。

 代码实现:

#include <iostream>
#include <map>
using namespace std;

map<int,int> cnt;//同余个数统计
int a[100010];
int s[100010];//前缀和
int main()
{
    int n,k;
    cin>>n>>k;
    s[0]=0;
    cnt[0]=1;//因为s[0]=0%k一定为0
    for(int i=1;i<=n;i++){
        cin>>a[i];
        s[i]=(s[i-1]+a[i])%k;//生成前缀和后求余
        cnt[s[i]]++;
    }
    long long ans=0;
    for(int i=0;i<k;i++){//余数必然在0到k-1之间
        ans+=(long long)cnt[i]*(cnt[i]-1)/2;//防止越界
        //例如,cnt[i]=3,则共有组合C32=3
    }
    cout<<ans<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值