字节青训入营考核十五题-Java-DNA序列编辑距离

问题

问题描述

小R正在研究DNA序列,他需要一个函数来计算将一个受损DNA序列(dna1)转换成一个未受损序列(dna2)所需的最少编辑步骤。编辑步骤包括:增加一个碱基、删除一个碱基或替换一个碱基。


测试样例

样例1:

输入:dna1 = "AGT",dna2 = "AGCT"
输出:1

样例2:

输入:dna1 = "AACCGGTT",dna2 = "AACCTTGG"
输出:4

样例3:

输入:dna1 = "ACGT",dna2 = "TGC"
输出:3

样例4:

输入:dna1 = "A",dna2 = "T"
输出:1

样例5:

输入:dna1 = "GGGG",dna2 = "TTTT"
输出:4

思路

示例 1:solution("AGT", "AGCT")
  • dna1 = "AGT", dna2 = "AGCT"
  • 动态规划过程
    • 初始化 dp 数组为 4x5 的矩阵(m = 3, n = 4)。
    • 填表后,dp[3][4] = 1,表示最小编辑距离是 1,即在 AGT 后插入字符 'C'。
  • 输出1
示例 2:solution("AACCGGTT", "AACCTTGG")
  • dna1 = "AACCGGTT", dna2 = "AACCTTGG"
  • 动态规划过程
    • 初始化 dp 数组为 9x9 的矩阵(m = 8, n = 8)。
    • 填表后,dp[8][8] = 4,表示最小编辑距离是 4,即替换两个 'G' 为 'T',以及插入一个 'C'。
  • 输出4
示例 3:solution("ACGT", "TGC")
  • dna1 = "ACGT", dna2 = "TGC"
  • 动态规划过程
    • 初始化 dp 数组为 5x4 的矩阵(m = 4, n = 3)。
    • 填表后,dp[4][3] = 3,表示最小编辑距离是 3,替换和插入操作。
  • 输出3
示例 4:solution("A", "T")
  • dna1 = "A", dna2 = "T"
  • 动态规划过程
    • 初始化 dp 数组为 2x2 的矩阵(m = 1, n = 1)。
    • 填表后,dp[1][1] = 1,表示最小编辑距离是 1,需要替换字符 'A' 为 'T'。
  • 输出1
示例 5:solution("GGGG", "TTTT")
  • dna1 = "GGGG", dna2 = "TTTT"
  • 动态规划过程
    • 初始化 dp 数组为 5x5 的矩阵(m = 4, n = 4)。
    • 填表后,dp[4][4] = 4,表示最小编辑距离是 4,即替换四个 'G' 为 'T'。
  • 输出4

代码

public class Main {
    public static int solution(String dna1, String dna2) {
        int m = dna1.length();
        int n = dna2.length();
        // 定义 DP 数组
        int[][] dp = new int[m + 1][n + 1];

        // 初始化
        for (int i = 0; i <= m; i++) {
            dp[i][0] = i; // 删除操作
        }
        for (int j = 0; j <= n; j++) {
            dp[0][j] = j; // 插入操作
        }

        // 动态规划填表
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (dna1.charAt(i - 1) == dna2.charAt(j - 1)) {
                    // 当前字符相等,无需额外操作
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    // 当前字符不等,考虑插入、删除、替换操作
                    dp[i][j] = Math.min(dp[i - 1][j], 
                                 Math.min(dp[i][j - 1], dp[i - 1][j - 1])) + 1;
                }
            }
        }

        // 返回最终结果
        return dp[m][n];
    }

    public static void main(String[] args) {
        // 测试样例
        System.out.println(solution("AGT", "AGCT")); // 输出 1
        System.out.println(solution("AACCGGTT", "AACCTTGG")); // 输出 4
        System.out.println(solution("ACGT", "TGC")); // 输出 3
        System.out.println(solution("A", "T")); // 输出 1
        System.out.println(solution("GGGG", "TTTT")); // 输出 4
    }
}

  • 最小编辑距离的计算是通过动态规划来实现的,时间复杂度为 O(m * n),其中 mn 是两个字符串的长度。
  • 程序通过构建一个 dp 数组逐步计算编辑距离,并在最后返回结果。

提交结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yamai Yuzuru

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值