JavaKMP算法——字符串匹配问题

   

目录

KMP算法:

一、介绍

二、作用与使用

三、图解

四、代码演示

五、输出结果


        有一个字符串 str1 = "BCDABCDABABCDABCABCD",和另一个字符串 str2 = "ABCAB"。

        现在要判断 str1 是否含有 str2,如果存在,就返回第一次出现的位置,如果没有,则返回-1。

KMP算法:

一、介绍

Knuth-Morris-Pratt字符串查找算法,简称为“KMP算法”,常用于在一个文本串S内查找一个模式串P的出现位置,这个算法由Donald Knuth、Vaughan Pratt James H.Morris三人于1977年联合发表,故取这3人的姓氏命名此算法。

二、作用与使用

(1)KMP是一个解决模式串在文本串是否出现过,如果出现过,最早出现的位置的 经典算法 。

(3)KMP方法算法就利用之前判断过信息,通过一个next数组,保存模式串中前后最长公共子序列的长度,每次回溯时,通过next数组找到,前面匹配过的位置,省去了大量的计算时间。

三、图解

1、首先,用 str1 的第一个字符和 str2 第一个字符去比较,同暴力匹配算法一样,不符合,关键词向后移动一位。

 2、重复第一步,若还是不符合,则继续向后移动

 3、一直重复,直到 str1 有一个字符与 str2 的第一个字符相同为止。

4、一直重复,直到 str1 有一个字符与 str2 对应的字符不符合。

5、若此时使用暴力匹配算法,指针回溯到一开始发现字符相同时的下一个字符,重复第一步,这其实是很不明智的。用暴力方法解决的话就会有大量的回溯,每次只移动一位,若是不匹配,移动到下一位接着判断,会浪费了大量的时间

         实际上,我们在进行匹配时,其实已经知道了 str2 前面四个字符为"ABCA"。KMP算法的想法是,设法利用这个已知信息,不要把”搜索位置”移回已经比较过的位置,继续把它向后移,这样就提高了效率。

6、我们对 str2 计算出一张“部分匹配表”。

 7、返回到第四步,已知D与A不匹配,而前面三个字符“ABC”是匹配的。查表可知,最后一个匹配字符C对应的部分匹配值为0。那么可以按照以下公式来计算需要向后移动的位数:

移动位数 = 已匹配的字符数 - 对应的部分匹配值

        因为 4 - 0  等于 0,所以指针从一开始发现字符相同时的位置向后移动四位。

 8、又因为A与C不匹配,此时已匹配的字符数为2(“AB”),对应的部分匹配值为0,所以移动位数为 2 - 0 = 2,指针后移两位。此后一直重复该步骤直到达成目的或结束。

四、代码演示

public class KMPAlgorithm {
    public static void main(String[] args) {
        String str1 = "BCDABCDABABCDABCABCD";
        String str2 = "ABCAB";

        int[] next = kmpNext(str2);
        System.out.println(Arrays.toString(next));
        System.out.println(kmpSearch(str1,str2,next));
    }

    /**
     * kmp搜索算法
     * @param str1 源字符串
     * @param str2 字串
     * @param next 子串对应的部分匹配表
     * @return  如果是-1就是没匹配到,否则返回第一个匹配的位置
     */
    public static int kmpSearch(String str1, String str2, int[] next){
        //遍历
        for (int i = 0, j = 0; i < str1.length(); i++){
            //需要处理str1.charAt(i) != str2.charAt(j),调整j的大小
            //kmp算法核心点
            while (j > 0 && str1.charAt(i) != str2.charAt(j)){
                j = next[j-1];//*************
            }
            if(str1.charAt(i) == str2.charAt(j)){
                j++;
            }
            if(j == str2.length()){//找到了
                return i - j + 1;
            }
        }
        return -1;
    }


    //获取到一个字符串(子串)的部分匹配值表
    public static int[] kmpNext(String dest){
        //创建一个next数组保存部分匹配值
        int[] next = new int[dest.length()];
        next[0] = 0;//如果字符串的长度为1,那么不管它是什么,它的部分匹配值都是0
        for (int i = 1, j = 0; i < dest.length(); i++){
            //当dest.charAt(i) != dest.charAt(j)满足时,我们需要从next[j-1]获取新的j
            //直到我们发现有dest.charAt(i) == dest.charAt(j)成立时才退出
            //这是kmp算法的核心点
            while (j > 0 && dest.charAt(i) != dest.charAt(j)){
                j = next[j-1];//*************
            }
            //当dest.charAt(i) == dest.charAt(j)满足时,部分匹配值就+1
            if(dest.charAt(i) == dest.charAt(j)){
                j++;
            }
            next[i] = j;
        }
        return next;
    }


}

五、输出结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梅川库紫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值