归一化函数

 

    在深度学习中,归一化是将输入数据调整到一个标准范围内的过程,这有助于模型训练的稳定性和收敛速度。以下是一些常见的归一化函数:

最小-最大归一化(Min-Max Normalization)

  
  在这里插入图片描述

其中 x 是原始数据, x’ 是归一化后的数据。

Z分数归一化(Z-score Normalization)

  
  在这里插入图片描述
其中 μ 是数据的均值,σ 是数据的标准差。

小数定标归一化(Decimal Scaling)

  
  在这里插入图片描述

其中 k 是一个常数,使得 x’ 的绝对值小于1。

对数归一化(Logarithmic Normalization)

  
在这里插入图片描述

适用于正数数据,可以减少数据的尺度差异。

幂律归一化(Power Normalization)

  
  在这里插入图片描述

其中 p 是一个常数,用于调整归一化的效果。

正切双曲归一化(Hyperbolic Tangent Normalization)

  
  在这里插入图片描述

将输入值映射到(-1, 1)区间。

批量归一化(Batch Normalization)

  
在这里插入图片描述

其中 μ_B 和 σ_B 分别是当前批次数据的均值和方差, ϵ 是一个很小的常数,用于防止除以零。

层归一化(Layer Normalization)

  
  [ x' = \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} ]

与批量归一化类似,但是是在单个样本的特征上进行归一化,而不是整个批次。

组归一化(Group Normalization)

  
  [ x' = \frac{x - \mu_G}{\sqrt{\sigma_G^2 + \epsilon}} ]

类似于层归一化,但是将输入数据分成多个组,然后在每个组内进行归一化。

实例归一化(Instance Normalization)

  
  [ x' = \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} ]
与层归一化类似,但是是针对单个样本进行归一化,而不是整个批次。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值